
Martin J Carden

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2686453/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Engineered transient and stable overexpression of translation factors elF3i and elF3c in CHOK1 and HEK293Âcells gives enhanced cell growth associated with increased c-Myc expression and increased recombinant protein synthesis. Metabolic Engineering, 2020, 59, 98-105.	7.0	17
2	A proteomic approach to understand MMPâ€3â€driven developmental processes in the postnatal cerebellum: Chaperonin CCT6A and MAP kinase as contributing factors. Developmental Neurobiology, 2015, 75, 1033-1048.	3.0	12
3	The chaperonin CCT interacts with and mediates the correct folding and activity of three subunits of translation initiation factor eIF3: b, i and h. Biochemical Journal, 2014, 458, 213-224.	3.7	16
4	ATR (ataxia telangiectasia mutated- and Rad3-related kinase) is activated by mild hypothermia in mammalian cells and subsequently activates p53. Biochemical Journal, 2011, 435, 499-508.	3.7	34
5	Modulation of Phosducin-Like Protein 3 (PhLP3) Levels Promotes Cytoskeletal Remodelling in a MAPK and RhoA-Dependent Manner. PLoS ONE, 2011, 6, e28271.	2.5	10
6	Postâ€ŧranslational events of a model reporter protein proceed with higher fidelity and accuracy upon mild hypothermic culturing of Chinese hamster ovary cells. Biotechnology and Bioengineering, 2010, 105, 215-220.	3.3	27
7	Biochemical insights into the mechanisms central to the response of mammalian cells to cold stress and subsequent rewarming. FEBS Journal, 2009, 276, 286-302.	4.7	91
8	On the Effect of Transient Expression of Mutated eIF2α and eIF4E Eukaryotic Translation Initiation Factors on Reporter Gene Expression in Mammalian Cells Upon Cold-Shock. Molecular Biotechnology, 2006, 34, 141-150.	2.4	15
9	The cold-shock response in cultured mammalian cells: Harnessing the response for the improvement of recombinant protein production. Biotechnology and Bioengineering, 2006, 93, 829-835.	3.3	130
10	The Cotranslational Contacts between Ribosome-bound Nascent Polypeptides and the Subunits of the Hetero-oligomeric Chaperonin TRiC Probed by Photocross-linking. Journal of Biological Chemistry, 2005, 280, 28118-28126.	3.4	36
11	Slow axonal transport of the cytosolic chaperonin CCT with Hsc73 and actin in motor neurons. Journal of Neuroscience Research, 2002, 68, 29-35.	2.9	31
12	Eukaryotic chaperonin containing T-complex polypeptide 1 interacts with filamentous actin and reduces the initial rate of actin polymerization in vitro. Cell Stress and Chaperones, 2002, 7, 235.	2.9	45
13	Selected Subunits of the Cytosolic Chaperonin Associate with Microtubules Assembled in Vitro. Journal of Biological Chemistry, 1999, 274, 2408-2415.	3.4	52
14	Disassembly of the Cytosolic Chaperonin in Mammalian Cell Extracts at Intracellular Levels of K+ and ATP. Journal of Biological Chemistry, 1999, 274, 19220-19227.	3.4	27
15	Subunits of the eukaryotic cytosolic chaperonin CCT do not always behave as components of a uniform hetero-oligomeric particle. European Journal of Cell Biology, 1999, 78, 21-32.	3.6	46
16	Getting it right: chaperonins. Trends in Cell Biology, 1997, 7, 174.	7.9	0
17	Definition of a Sequence Unique in βII Spectrin Required for Its Axonâ€6pecific Interaction with Fodaxin (A60). Journal of Neurochemistry, 1997, 68, 1686-1695.	3.9	8
18	Immunological characterization of cytoskeletal proteins associated with the basal body, axoneme and flagellum attachment zone of <i>Trypanosoma brucei</i> . Parasitology, 1995, 111, 77-85.	1.5	25

MARTIN J CARDEN

#	Article	IF	CITATIONS
19	Neuronal aspects of cytosolic chaperonin complexes: structures implicated in the production of functional cytoskeletal proteins. Biochemical Society Transactions, 1995, 23, 70-76.	3.4	5
20	Non-Uniform Distribution & Associations Of Triplet Proteins In Neurofilaments. Biochemical Society Transactions, 1995, 23, 42S-42S.	3.4	0
21	Examination Of Neurofilament Assembly Dynamics In Vitro. Biochemical Society Transactions, 1995, 23, 43S-43S.	3.4	2
22	Molecular characterisation of a novel, repetitive protein of the paraflagellar rod in Trypanosoma brucei. Molecular and Biochemical Parasitology, 1994, 67, 31-39.	1.1	28
23	Loss of the Compound Action Potential: an Electrophysiological, Biochemical and Morphological Study of Early Events in Axonal Degeneration in the C57BL/Ola Mouse. European Journal of Neuroscience, 1994, 6, 516-524.	2.6	45
24	Cytosolic chaperonin complexes in the †neurone-like' ND7/23 cell line. Biochemical Society Transactions, 1994, 22, 177S-177S.	3.4	1
25	Identification of Chaperonin Particles in Mammalian Brain Cytosol and of T-Complex Polypeptide 1 as One of Their Components. Journal of Neurochemistry, 1993, 60, 2327-2330.	3.9	22
26	Reinvestigation of a Ca2+/calmodulin dependent neurofilament-directed protein kinase activity. Biochemical Society Transactions, 1993, 21, 197S-197S.	3.4	0
27	The largest neurofilament component assembles in non-neuronal cells (fibroblasts), but is not phosphorylated. Biochemical Society Transactions, 1991, 19, 1147-1148.	3.4	1
28	The structure of the largest murine neurofilament protein (NF-H) as revealed by cDNA and genomic sequences. Molecular Brain Research, 1988, 4, 217-231.	2.3	47
29	Identification of the major multiphosphorylation site in mammalian neurofilaments Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 1998-2002.	7.1	346
30	Studies of neurofilaments that accumulate in proximal axons of rats intoxicated with β,β′-iminodipropionitrile (IDPN). Neurochemical Pathology, 1987, 7, 189-205.	1.1	16
31	2,5-Hexanedione neuropathy is associated with the covalent crosslinking of neurofilament proteins. Neurochemical Pathology, 1986, 5, 25-35.	1.1	48
32	Domain structure of neurofilament subunits as revealed by monoclonal antibodies. Journal of Cellular Biochemistry, 1985, 27, 181-187.	2.6	5