Marianella Hernandez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2686397/publications.pdf

Version: 2024-02-01

67 3,272 29 56
papers citations h-index g-index

68 68 68 3603
all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Unravelling the effect of healing conditions and vulcanizing additives on the healing performance of rubber networks. Polymer, 2022, 238, 124399.	3.8	19
2	Setting Relationships between Structure and Devulcanization of Ground Tire Rubber and Their Effect on Self-Healing Elastomers. Polymers, 2022, $14,11.$	4.5	4
3	The Final Frontier of Sustainable Materials: Current Developments in Self-Healing Elastomers. International Journal of Molecular Sciences, 2022, 23, 4757.	4.1	17
4	Solving the Dichotomy between Selfâ€Healing and Mechanical Properties in Rubber Composites by Combining Reinforcing and Sustainable Fillers. Macromolecular Materials and Engineering, 2022, 307, .	3.6	12
5	Design of self-healing styrene-butadiene rubber compounds with ground tire rubber-based reinforcing additives by means of DoE methodology. Materials and Design, 2022, 221, 110909.	7.0	7
6	Intrinsic Self-Healing Epoxies in Polymer Matrix Composites (PMCs) for Aerospace Applications. Polymers, 2021, 13, 201.	4.5	61
7	On the Use of Mechano-Chemically Modified Ground Tire Rubber (GTR) as Recycled and Sustainable Filler in Styrene-Butadiene Rubber (SBR) Composites. Journal of Composites Science, 2021, 5, 68.	3.0	33
8	Measuring self-healing in epoxy matrices: The need for standard conditions. Reactive and Functional Polymers, 2021, 161, 104847.	4.1	12
9	Sustainable mobility: The route of tires through the circular economy model. Waste Management, 2021, 126, 309-322.	7.4	59
10	Reinforcement of natural rubber using a novel combination of conventional and in situ generated fillers. Composites Part C: Open Access, 2021, 5, 100133.	3.2	18
11	Understanding the Molecular Dynamics of Dual Crosslinked Networks by Dielectric Spectroscopy. Polymers, 2021, 13, 3234.	4.5	16
12	An effective and sustainable approach for achieving self-healing in nitrile rubber. European Polymer Journal, 2020, 139, 110032.	5.4	52
13	Evolution of self-healing elastomers, from extrinsic to combined intrinsic mechanisms: a review. Materials Horizons, 2020, 7, 2882-2902.	12.2	225
14	Electrical Properties of Poly(Monomethyl Itaconate)/Few-Layer Functionalized Graphene Oxide/Lithium Ion Nanocomposites. Polymers, 2020, 12, 2673.	4.5	3
15	Order and Dielectric Relaxation During Polymer Crystallization. Advances in Dielectrics, 2020, , 195-220.	1.2	0
16	Design of Rubber Composites with Autonomous Self-Healing Capability. ACS Omega, 2020, 5, 1902-1910.	3.5	65
17	In-situ cure monitoring of epoxy/graphene nanocomposites by several spectroscopic techniques. Polymer Testing, 2019, 80, 106114.	4.8	11
18	Thermo-reversible crosslinked natural rubber: A Diels-Alder route for reuse and self-healing properties in elastomers. Polymer, 2019, 175, 15-24.	3.8	82

#	Article	IF	Citations
19	Electro-mechanical actuation performance of SEBS/PU blends. Polymer, 2019, 171, 25-33.	3.8	27
20	Giving a Second Opportunity to Tire Waste: An Alternative Path for the Development of Sustainable Self-Healing Styrene–Butadiene Rubber Compounds Overcoming the Magic Triangle of Tires. Polymers, 2019, 11, 2122.	4.5	41
21	Synergistic icephobic behaviour of swollen nitrile butadiene rubber graphene and/or carbon nanotube composites. Composites Part B: Engineering, 2019, 166, 352-360.	12.0	14
22	Nitrile butadiene rubber composites reinforced with reduced graphene oxide and carbon nanotubes show superior mechanical, electrical and icephobic properties. Composites Science and Technology, 2018, 166, 109-114.	7.8	51
23	Routes to Make Natural Rubber Heal: A Review. Polymer Reviews, 2018, 58, 585-609.	10.9	48
24	Identifying the effect of aromatic oil on the individual component dynamics of Sâ€6BR/BR blends by broadband dielectric spectroscopy. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 842-854.	2.1	10
25	Understanding the Effect of the Dianhydride Structure on the Properties of Semiaromatic Polyimides Containing a Biobased Fatty Diamine. ACS Sustainable Chemistry and Engineering, 2018, 6, 668-678.	6.7	38
26	Design of a new generation of sustainable SBR compounds with good trade-off between mechanical properties and self-healing ability. European Polymer Journal, 2018, 106, 273-283.	5.4	37
27	Optimisation of Protonâ€Conducting sPEEK Membranes through a Thermal Treatment Method Monitored by Dielectric Spectroscopy. ChemistrySelect, 2018, 3, 2931-2942.	1.5	1
28	Reply to Comment on "Monitoring Network and Interfacial Healing Processes by Broadband Dielectric Spectroscopy: A Case Study on Natural Rubber― ACS Applied Materials & Samp; Interfaces, 2017, 9, 14552-14554.	8.0	6
29	Effect of graphene content on the restoration of mechanical, electrical and thermal functionalities of a self-healing natural rubber. Smart Materials and Structures, 2017, 26, 085010.	3.5	30
30	Response to Comment on "Turning Vulcanized Natural Rubber into a Self-Healing Polymer: Effect of the Disulfide/Polysulfide Ratio― ACS Sustainable Chemistry and Engineering, 2017, 5, 11127-11129.	6.7	26
31	Monitoring Network and Interfacial Healing Processes by Broadband Dielectric Spectroscopy: A Case Study on Natural Rubber. ACS Applied Materials & Samp; Interfaces, 2016, 8, 10647-10656.	8.0	51
32	Turning Vulcanized Natural Rubber into a Self-Healing Polymer: Effect of the Disulfide/Polysulfide Ratio. ACS Sustainable Chemistry and Engineering, 2016, 4, 5776-5784.	6.7	173
33	Characterization of Self-Healing Polymers: From Macroscopic Healing Tests to the Molecular Mechanism. Advances in Polymer Science, 2015, , 113-142.	0.8	39
34	Influence of the vulcanization system on the dynamics and structure of natural rubber: Comparative study by means of broadband dielectric spectroscopy and solid-state NMR spectroscopy. European Polymer Journal, 2015, 68, 90-103.	5.4	51
35	One Dimensional PMMA Nanofibers from AAO Templates. Evidence of Confinement Effects by Dielectric and Raman Analysis. Macromolecules, 2013, 46, 4995-5002.	4.8	60
36	Structure and Segmental Dynamics Relationship in Natural Rubber/Layered Silicate Nanocomposites during Uniaxial Deformation. Macromolecules, 2013, 46, 3176-3182.	4.8	16

#	Article	IF	CITATIONS
37	Comparison of filler percolation and mechanical properties in graphene and carbon nanotubes filled epoxy nanocomposites. European Polymer Journal, 2013, 49, 1347-1353.	5.4	236
38	Towards materials with enhanced electro-mechanical response: CaCu3Ti4O12–polydimethylsiloxane composites. Journal of Materials Chemistry, 2012, 22, 24705.	6.7	72
39	Overall performance of natural rubber/graphene nanocomposites. Composites Science and Technology, 2012, 73, 40-46.	7.8	195
40	Study of the thermal stability of Nitrile rubber-coconut flour compounds. Polymer Degradation and Stability, 2012, 97, 2202-2211.	5.8	12
41	Role of Vulcanizing Additives on the Segmental Dynamics of Natural Rubber. Macromolecules, 2012, 45, 1070-1075.	4.8	54
42	Nitrile rubber–bentonite composites: a thermal degradation study. Polymer Bulletin, 2012, 68, 1935-1950.	3.3	8
43	Cationic photocured epoxy nanocomposites filled with different carbon fillers. Polymer, 2012, 53, 1831-1838.	3.8	58
44	Effects of Strain-Induced Crystallization on the Segmental Dynamics of Vulcanized Natural Rubber. Macromolecules, 2011, 44, 6574-6580.	4.8	49
45	Functionalised graphene sheets as effective high dielectric constant fillers. Nanoscale Research Letters, 2011, 6, 508.	5 . 7	107
46	Characterization of NBR/bentonite composites: vulcanization kinetics and rheometric and mechanical properties. Polymer Bulletin, 2011, 67, 653-667.	3.3	23
47	Curing kinetics of NBR filled with coconut flour. Polymer Composites, 2011, 32, 529-536.	4.6	2
48	Recent Advances in Clay/Polymer Nanocomposites. Advanced Materials, 2011, 23, 5229-5236.	21.0	262
49	Molecular Dynamics of Natural Rubber/Layered Silicate Nanocomposites As Studied by Dielectric Relaxation Spectroscopy. Macromolecules, 2010, 43, 643-651.	4.8	94
50	Influence of content and particle size of waste pet bottles on concrete behavior at different w/c ratios. Waste Management, 2009, 29, 2707-2716.	7.4	336
51	Miscibility–dispersion, interfacial strength and nanoclay mobility relationships in polymer nanocomposites. Soft Matter, 2009, 5, 3481.	2.7	21
52	HDPEâ€Coconut Flour Composites: Effect of Coupling Agents and Surface Modification. Macromolecular Symposia, 2009, 286, 70-80.	0.7	1
53	Influence of High Temperatures on PETâ€Concrete Properties. Macromolecular Symposia, 2009, 286, 195-202.	0.7	2
54	Fracture behavior at low strain rate of dynamically and statically vulcanized polypropylene/styrene–butadiene–styrene block copolymer blends. Polymer Testing, 2008, 27, 881-885.	4.8	7

#	Article	IF	CITATIONS
55	INFLUENCE OF ELEVATED TEMPERATURES ON PET-CONCRETE PROPERTIES. AIP Conference Proceedings, 2008, , .	0.4	0
56	STUDIES ON HDPE-COCONUT FLOUR COMPOSITES: EFFECT OF COUPLING AGENTS AND SURFACE MODIFICATION. AIP Conference Proceedings, 2008, , .	0.4	0
57	Curing and Physical Properties of Natural Rubber/Wood Flour Composites. Macromolecular Symposia, 2006, 239, 192-200.	0.7	19
58	Influence of Type of Vulcanization on Rheological and Thermal Properties of PP/NR Blends. Polymer Bulletin, 2006, 56, 285-291.	3.3	12
59	Characterization of blends of PP and SBS vulcanized with gamma irradiation. Nuclear Instruments & Methods in Physics Research B, 2005, 236, 354-358.	1.4	5
60	Influence of scrap rubber addition to Portland I concrete composites: Destructive and non-destructive testing. Composite Structures, 2005, 71, 439-446.	5.8	178
61	Comparison of Rheological and Mechanical Behavior of Dynamically and Statically Vulcanized PP/SBS Blends. Polymer Bulletin, 2004, 51, 419-427.	3.3	16
62	Effects of Composition and Dynamic Vulcanization on the Rheological Properties of PP/NBR Blends. Polymer Bulletin, 2003, 50, 205-212.	3.3	18
63	Mechanical, thermal and morphological behaviour of the polystyrene/polypropylene (80/20) blend, irradiated with γ-rays at low doses (0–70 kGy). Polymer Degradation and Stability, 2003, 80, 251-261.	5.8	37
64	Analysis of thermogravimetric data of blends of polyolefins with calcium carbonate treated with Lica 12. Polymer Degradation and Stability, 2001, 73, 211-224.	5.8	18
65	Effects of Particle Size and Size Distribution on the Mechanical Properties of EPDM/Silica Vulcanizates. Advanced Materials Research, 0, 47-50, 113-116.	0.3	6
66	Fracture Behavior of Polypropylene /Elastomer Blends. Advanced Materials Research, 0, 47-50, 278-281.	0.3	2
67	Effects of Orientation on the Segmental Dynamics of Natural Rubber. Materials Science Forum, 0, 714, 57-61.	0.3	1