
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2686038/publications.pdf

Version: 2024-02-01

LOSE C. RODCES

#	Article	IF	CITATIONS
1	An optimization approach to design forest road networks and plan timber transportation. Operational Research, 2022, 22, 2973-3001.	2.0	2
2	A Systematic Review of Applications of Machine Learning Techniques for Wildfire Management Decision Support. Inventions, 2022, 7, 15.	2.5	33
3	An Ecological-Economic Approach to Assess Impacts of the Expansion of Eucalyptus Plantations in Agroforest Landscapes of Northern Ethiopia. Forests, 2022, 13, 686.	2.1	2
4	Multicriteria Decision Analysis and Group Decision-Making to Select Stand-Level Forest Management Models and Support Landscape-Level Collaborative Planning. Forests, 2021, 12, 399.	2.1	11
5	Ecosystem Services Auctions: The Last Decade of Research. Forests, 2021, 12, 578.	2.1	8
6	Power analysis as a tool to analyse trade-offs between ecosystem services in forest management: A case study from nine European countries. Ecosystem Services, 2021, 49, 101290.	5.4	17
7	A Participatory and Spatial Multicriteria Decision Approach to Prioritize the Allocation of Ecosystem Services to Management Units. Land, 2021, 10, 747.	2.9	10
8	Forest management for optimizing soil protection: a landscape-level approach. Forest Ecosystems, 2021, 8, .	3.1	10
9	Building Pareto Frontiers for Ecosystem Services Tradeoff Analysis in Forest Management Planning Integer Programs. Forests, 2021, 12, 1244.	2.1	8
10	Management of Multiple Ecosystem Services under Climate Change, Bioeconomy and Participation. Forests, 2021, 12, 104.	2.1	4
11	Combining Tree Species Composition and Understory Coverage Indicators with Optimization Techniques to Address Concerns with Landscape-Level Biodiversity. Land, 2021, 10, 126.	2.9	10
12	A Web-Based Approach for Visualizing Interactive Decision Maps. Information (Switzerland), 2021, 12, 9.	2.9	2
13	Bi-Level Participatory Forest Management Planning Supported by Pareto Frontier Visualization. Forest Science, 2020, 66, 490-500.	1.0	9
14	Appraisal framework for actor interest and power analysis in forest management - Insights from Northern Portugal. Forest Policy and Economics, 2020, 111, 102049.	3.4	25
15	An approach to assess actors' preferences and social learning to enhance participatory forest management planning. Trees, Forests and People, 2020, 2, 100026.	1.9	11
16	Integrating ecosystem services in power analysis in forest governance: A comparison across nine European countries. Forest Policy and Economics, 2020, 121, 102317.	3.4	9
17	Forest Biodiversity, Carbon Sequestration, and Wood Production: Modeling Synergies and Trade-Offs for Ten Forest Landscapes Across Europe. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	36
18	A Design for Addressing Multiple Ecosystem Services in Forest Management Planning. Forests, 2020, 11, 1108.	2.1	27

#	Article	IF	CITATIONS
19	Addressing soil protection concerns in forest ecosystem management under climate change. Forest Ecosystems, 2020, 7, .	3.1	15
20	Stand Structural Characteristics Are the Most Practical Biodiversity Indicators for Forest Management Planning in Europe. Forests, 2020, 11, 343.	2.1	31
21	Linking forest policy issues and decision support tools in Europe. Forest Policy and Economics, 2019, 103, 4-16.	3.4	11
22	Forest decision support systems for the analysis of ecosystem services provisioning at the landscape scale under global climate and market change scenarios. European Journal of Forest Research, 2019, 138, 561-581.	2.5	43
23	Web-Based Forest Resources Management Decision Support System. Forests, 2019, 10, 1079.	2.1	19
24	Improving silvicultural practices for Mediterranean forests through fire behaviour modelling using LiDAR-derived canopy fuel characteristics. International Journal of Wildland Fire, 2019, 28, 823.	2.4	38
25	A generalizable monitoring model to implement policies to promote forest restoration – A case study in São Paulo - Brazil. Forest Policy and Economics, 2019, 103, 123-135.	3.4	2
26	Combining Decision Support Approaches for Optimizing the Selection of Bundles of Ecosystem Services. Forests, 2018, 9, 438.	2.1	30
27	Coupling fire behaviour modelling and stand characteristics to assess and mitigate fire hazard in a maritime pine landscape in Portugal. European Journal of Forest Research, 2017, 136, 527-542.	2.5	20
28	Are forest disturbances amplifying or canceling out climate change-induced productivity changes in European forests?. Environmental Research Letters, 2017, 12, 034027.	5.2	142
29	Addressing Wildfire Risk in Forest Management Planning with Multiple Criteria Decision Making Methods. Sustainability, 2017, 9, 298.	3.2	27
30	Modeling Post-Fire Mortality in Pure and Mixed Forest Stands in Portugal—A Forest Planning-Oriented Model. Sustainability, 2017, 9, 390.	3.2	20
31	Decision Support Tools and Strategies to Simulate Forest Landscape Evolutions Integrating Forest Owner Behaviour: A Review from the Case Studies of the European Project, INTEGRAL. Sustainability, 2017, 9, 599.	3.2	23
32	A framework for modeling adaptive forest management and decision making under climate change. Ecology and Society, 2017, 22, .	2.3	72
33	A Multiple Criteria Approach for Negotiating Ecosystem Services Supply Targets and Forest Owners' Programs. Forest Science, 2017, 63, 49-61.	1.0	65
34	A climate change adaptive dynamic programming approach to optimize eucalypt stand management scheduling: a Portuguese application. Canadian Journal of Forest Research, 2016, 46, 1000-1008.	1.7	11
35	Usefulness and perceived usefulness of Decision Support Systems (DSSs) in participatory forest planning: the final users' point of view. IForest, 2016, 9, 422-429.	1.4	8
36	Institutional factors and opportunities for adapting European forest management to climate change. Regional Environmental Change, 2015, 15, 1595-1609.	2.9	20

#	Article	IF	CITATIONS
37	Addressing Wildfire Risk in a Landscape-Level Scheduling Model: An Application in Portugal. Forest Science, 2015, 61, 266-277.	1.0	15
38	Decision Support for the Provision of Ecosystem Services under Climate Change: An Editorial. Forests, 2015, 6, 3212-3217.	2.1	19
39	A Decision Support System for Assessing Trade-Offs between Ecosystem Management Goals: An Application in Portugal. Forests, 2015, 6, 65-87.	2.1	42
40	How Sensitive Are Ecosystem Services in European Forest Landscapes to Silvicultural Treatment?. Forests, 2015, 6, 1666-1695.	2.1	103
41	Adaptive management and debarking schedule optimization of Quercus suber L. stands under climate change: case study in Chamusca, Portugal. Regional Environmental Change, 2015, 15, 1569-1580.	2.9	30
42	Cohesive fire management within an uncertain environment: A review of risk handling and decision support systems. Forest Ecology and Management, 2015, 347, 1-17.	3.2	56
43	Linear regression on the characterization of elements of natural origin and possible implications in the use of ground. AIP Conference Proceedings, 2015, , .	0.4	0
44	Statistical models for categorical data: Brief review for applications in ecology. AIP Conference Proceedings, 2015, , .	0.4	2
45	A Bayesian Modelling of Wildfires in Portugal. CIM Series in Mathematical Sciences, 2015, , 723-733.	0.4	3
46	Analysis of the performance of different implementations of a heuristic method to optimize forest harvest scheduling. Silva Fennica, 2015, 49, .	1.3	16
47	A web-based ToolBox approach to support adaptive forest management under climate change. Scandinavian Journal of Forest Research, 2014, 29, 96-107.	1.4	23
48	Integrating fire risk in stand management scheduling. An application to Maritime pine stands in Portugal. Annals of Operations Research, 2014, 219, 379-395.	4.1	29
49	A decision support system for management planning of Eucalyptus plantations facing climate change. Annals of Forest Science, 2014, 71, 187-199.	2.0	35
50	The Management of Industrial Forest Plantations. Managing Forest Ecosystems, 2014, , .	0.9	16
51	A stochastic approach to optimize Maritime pine (Pinus pinaster Ait.) stand management scheduling under fire risk. An application in Portugal. Annals of Operations Research, 2014, 219, 359-377.	4.1	27
52	Addressing Multicriteria Forest Management With Pareto Frontier Methods: An Application in Portugal. Forest Science, 2014, 60, 63-72.	1.0	63
53	Economics and Management of Industrial Forest Plantations. Managing Forest Ecosystems, 2014, , 121-170.	0.9	1
54	Integrating Management Planning Levels with Decision Support Systems. Managing Forest Ecosystems, 2014, , 299-319.	0.9	0

4

#	Article	IF	CITATIONS
55	Addressing Risk in Forest Management Planning. Managing Forest Ecosystems, 2014, , 321-346.	0.9	Ο
56	Strategic Management Scheduling. Managing Forest Ecosystems, 2014, , 171-238.	0.9	1
57	Developing wildfire risk probability models for Eucalyptus globulus stands in Portugal. IForest, 2013, 6, 217-227.	1.4	29
58	Review. Assessing uncertainty and risk in forest planning and decision support systems: review of classical methods and introduction of new approaches. Forest Systems, 2013, 22, 282.	0.3	62
59	A participatory approach to design a toolbox to support forest management planning at regional level. Forest Systems, 2013, 22, 340.	0.3	11
60	A decision support system for a multi stakeholder's decision process in a Portuguese National Forest. Forest Systems, 2013, 22, 359.	0.3	20
61	A Stochastic Dynamic Programming Approach to Optimize Short-Rotation Coppice Systems Management Scheduling: An Application to Eucalypt Plantations under Wildfire Risk in Portugal. Forest Science, 2012, 58, 353-365.	1.0	28
62	Assessing wildfire occurrence probability in Pinus pinaster Ait. stands in Portugal. Forest Systems, 2012, 21, 111.	0.3	21
63	An Enterprise Architecture Approach for Designing an Integrated Wood Supply Management System. , 2012, , 1-21.		3
64	Assessing forest management strategies using a contingent valuation approach and advanced visualisation techniques: A Portuguese case study. Journal of Forest Economics, 2011, 17, 399-414.	0.2	23
65	A three-step approach to post-fire mortality modelling in maritime pine (Pinus pinaster Ait) stands for enhanced forest planning in Portugal. Forestry, 2011, 84, 197-206.	2.3	19
66	Characterization of wildfires in Portugal. European Journal of Forest Research, 2011, 130, 775-784.	2.5	100
67	An enterprise architecture approach to forest management support systems design: an application to pulpwood supply management in Portugal. European Journal of Forest Research, 2011, 130, 935-948.	2.5	27
68	Developing post-fire Eucalyptus globulus stand damage and tree mortality models for enhanced forest planning in Portugal. Silva Fennica, 2011, 45, .	1.3	21
69	An approach to cork oak forest management planning: a case study in southwestern Portugal. European Journal of Forest Research, 2010, 129, 233-241.	2.5	18
70	Assessing impacts of Common Agricultural Policy changes on regional land use patterns with a decision support system. Forest Policy and Economics, 2010, 12, 111-120.	3.4	26
71	Applying Enterprise Architecture to the Design of the Integrated Forest Products Supply Chain Management System. Communications in Computer and Information Science, 2010, , 32-40.	0.5	1
72	Coordinating Management Decisions of Neighboring Stands with Dynamic Programming. Managing Forest Ecosystems, 2008, , 187-213.	0.9	12

#	Article	IF	CITATIONS
73	Decision Support Systems in Forest Management. , 2008, , 499-533.		34
74	A New Mixed-Integer Programming Model for Harvest Scheduling Subject to Maximum Area Restrictions. Operations Research, 2008, 56, 542-551.	1.9	82
75	Designing Green Landscapes. Managing Forest Ecosystems, 2008, , .	0.9	15
76	Addressing collaborative planning methods and tools in forest management. Forest Ecology and Management, 2007, 248, 107-118.	3.2	61
77	A real-time visualization tool for forest ecosystem management decision support. Computers and Electronics in Agriculture, 2006, 53, 3-12.	7.7	31
78	A column generation approach for solving a non-temporal forest harvest model with spatial structure constraints. European Journal of Operational Research, 2005, 161, 478-498.	5.7	32
79	Designing decision support tools for Mediterranean forest ecosystems management: a case study in Portugal. Annals of Forest Science, 2005, 62, 751-760.	2.0	37
80	A framework for data quality for Mediterranean sustainable ecosystem management. Annals of Forest Science, 2004, 61, 557-568.	2.0	15
81	A Decision Support System for Forest Ecosystem Management in Portugal. Managing Forest Ecosystems, 2003, , 155-163.	0.9	16
82	Comparison of Heuristics for Spatially Constrained Natural Resource Management Problems. Managing Forest Ecosystems, 2003, , 269-277.	0.9	0
83	Heuristics in Multi-Objective Forest Management. Managing Forest Ecosystems, 2002, , 119-151.	0.9	19
84	Structuring a landscape by forestland classification and harvest scheduling spatial constraints. Forest Ecology and Management, 2000, 130, 269-275.	3.2	24
85	Assessing the impact of management unit design and adjacency constraints on forestwide spatial conditions and timber revenues. Canadian Journal of Forest Research, 1999, 29, 1764-1774.	1.7	28
86	A quantitative approach to cork oak forest management. Forest Ecology and Management, 1997, 97, 223-229.	3.2	28
87	Addressing trade-offs among fuel management scenarios through a dynamic and spatial integrated approach for enhanced decision-making in eucalyptus forest. , 0, , 1623-1627.		0
88	An Enterprise Architecture Approach for Designing an Integrated Wood Supply Management System. , 0, , 434-453.		0
89	Large-Scale Wildfire Mitigation Through Deep Reinforcement Learning. Frontiers in Forests and Global Change, 0, 5, .	2.3	2