
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2686005/publications.pdf Version: 2024-02-01

Ruo-Cu L

#	Article	IF	CITATIONS
1	Obstructive Sleep Apnea and Cardiovascular Events After Percutaneous Coronary Intervention. Circulation, 2016, 133, 2008-2017.	1.6	178
2	Cardiac resynchronization therapy by left bundle branch area pacing in patients with heart failure and left bundle branch block. Heart Rhythm, 2019, 16, 1783-1790.	0.7	146
3	GATA5 loss-of-function mutations associated with congenital bicuspid aortic valve. International Journal of Molecular Medicine, 2014, 33, 1219-1226.	4.0	88
4	A Novel NKX2.5 Loss-of-Function Mutation Associated With Congenital Bicuspid Aortic Valve. American Journal of Cardiology, 2014, 114, 1891-1895.	1.6	74
5	Mutations of the SCN4B-encoded sodium channel β4 subunit in familial atrial fibrillation. International Journal of Molecular Medicine, 2013, 32, 144-150.	4.0	63
6	TBX20 loss-of-function mutation responsible for familial tetralogy of Fallot or sporadic persistent truncus arteriosus. International Journal of Medical Sciences, 2017, 14, 323-332.	2.5	57
7	A novel NKX2-5 loss-of-function mutation predisposes to familial dilated cardiomyopathy and arrhythmias. International Journal of Molecular Medicine, 2015, 35, 478-486.	4.0	53
8	TBX5 loss-of-function mutation contributes to familial dilated cardiomyopathy. Biochemical and Biophysical Research Communications, 2015, 459, 166-171.	2.1	47
9	A HAND2 Loss-of-Function Mutation Causes Familial Ventricular Septal Defect and Pulmonary Stenosis. G3: Genes, Genomes, Genetics, 2016, 6, 987-992.	1.8	47
10	GATA4 loss-of-function mutation underlies familial dilated cardiomyopathy. Biochemical and Biophysical Research Communications, 2013, 439, 591-596.	2.1	45
11	Prevalence and spectrum of GATA4 mutations associated with sporadic dilated cardiomyopathy. Gene, 2014, 548, 174-181.	2.2	43
12	Mutational Spectrum of the <i>NKX2-5</i> Gene in Patients with Lone Atrial Fibrillation. International Journal of Medical Sciences, 2014, 11, 554-563.	2.5	37
13	GATA4 Loss-of-Function Mutation and the Congenitally Bicuspid Aortic Valve. American Journal of Cardiology, 2018, 121, 469-474.	1.6	37
14	A Novel TBX1 Loss-of-Function Mutation Associated with Congenital Heart Disease. Pediatric Cardiology, 2015, 36, 1400-1410.	1.3	34
15	GATA6 loss-of-function mutations contribute to familial dilated cardiomyopathy. International Journal of Molecular Medicine, 2014, 34, 1315-1322.	4.0	33
16	A <i>SHOX2</i> loss-of-function mutation underlying familial atrial fibrillation. International Journal of Medical Sciences, 2018, 15, 1564-1572.	2.5	33
17	PITX2 Loss-of-Function Mutation Contributes to Congenital Endocardial Cushion Defect and Axenfeld-Rieger Syndrome. PLoS ONE, 2015, 10, e0124409.	2.5	29
18	CASZ1 loss-of-function mutation associated with congenital heart disease. Gene, 2016, 595, 62-68.	2.2	28

#	Article	IF	CITATIONS
19	PITX2 loss-of-function mutation contributes to tetralogy of Fallot. Gene, 2016, 577, 258-264.	2.2	28
20	A novel NR2F2 loss-of-function mutation predisposes to congenital heart defect. European Journal of Medical Genetics, 2018, 61, 197-203.	1.3	27
21	NKX2-6 mutation predisposes to familial atrial fibrillation. International Journal of Molecular Medicine, 2014, 34, 1581-1590.	4.0	25
22	Nuclear receptor corepressor 1 represses cardiac hypertrophy. EMBO Molecular Medicine, 2019, 11, e9127.	6.9	25
23	Prevalence and spectrum of NKX2.5 mutations in patients with congenital atrial septal defect and atrioventricular block. Molecular Medicine Reports, 2017, 15, 2247-2254.	2.4	24
24	TBX5 loss-of-function mutation contributes to atrial fibrillation and atypical Holt-Oram syndrome. Molecular Medicine Reports, 2016, 13, 4349-4356.	2.4	23
25	Prevalence and spectrum of Nkx2.6 mutations in patients with congenital heart disease. European Journal of Medical Genetics, 2014, 57, 579-586.	1.3	21
26	ISL1 loss-of-function mutation contributes to congenital heart defects. Heart and Vessels, 2019, 34, 658-668.	1.2	21
27	Circ_0002984 induces proliferation, migration and inflammation response of VSMCs induced by oxâ€LDL through miRâ€'326â€3p/VAMP3 axis in atherosclerosis. Journal of Cellular and Molecular Medicine, 2021, 25, 8028-8038.	3.6	21
28	PITX2C loss-of-function mutations responsible for idiopathic atrial fibrillation. Clinics, 2014, 69, 15-22.	1.5	21
29	Prevalence and spectrum of LRRC10 mutations associated with idiopathic dilated cardiomyopathy. Molecular Medicine Reports, 2015, 12, 3718-3724.	2.4	20
30	MEF2C loss-of-function mutation associated with familial dilated cardiomyopathy. Clinical Chemistry and Laboratory Medicine, 2018, 56, 502-511.	2.3	20
31	Connexin45 (GJC1) loss-of-function mutation contributes to familial atrial fibrillation and conduction disease. Heart Rhythm, 2021, 18, 684-693.	0.7	20
32	Prevalence and Spectrum of TBX5 Mutation in Patients with Lone Atrial Fibrillation. International Journal of Medical Sciences, 2016, 13, 60-67.	2.5	19
33	Prevalence and Spectrum of NKX2-5 Mutations Associated With Sporadic Adult-Onset Dilated Cardiomyopathy. International Heart Journal, 2017, 58, 521-529.	1.0	19
34	Microbiota in Gut, Oral Cavity, and Mitral Valves Are Associated With Rheumatic Heart Disease. Frontiers in Cellular and Infection Microbiology, 2021, 11, 643092.	3.9	19
35	HAND2 loss-of-function mutation causes familial dilated cardiomyopathy. European Journal of Medical Genetics, 2019, 62, 103540.	1.3	16
36	Effects of Ethnicity on the Prevalence of Obstructive Sleep Apnoea in Patients with Acute Coronary Syndrome: A Pooled Analysis of the ISAACC Trial and Sleep and Stent Study. Heart Lung and Circulation, 2017, 26, 486-494.	0.4	14

#	Article	IF	CITATIONS
37	AMPK/NF-κB signaling pathway regulated by ghrelin participates in the regulation of HUVEC and THP1 Inflammation. Molecular and Cellular Biochemistry, 2018, 437, 45-53.	3.1	14
38	A New <i>ISL1</i> Loss-of-Function Mutation Predisposes to Congenital Double Outlet Right Ventricle. International Heart Journal, 2019, 60, 1113-1122.	1.0	14
39	NR2F2 loss‑of‑function mutation is responsible for congenital bicuspid aortic valve. International Journal of Molecular Medicine, 2019, 43, 1839-1846.	4.0	11
40	Prediction of response after cardiac resynchronization therapy with machine learning. International Journal of Cardiology, 2021, 344, 120-126.	1.7	10
41	KLF15 Loss-of-Function Mutation Underlying Atrial Fibrillation as well as Ventricular Arrhythmias and Cardiomyopathy. Genes, 2021, 12, 408.	2.4	9
42	Lipid goal attainment in postâ€acute coronary syndrome patients in China: Results from the 6â€month realâ€world dyslipidemia international study <scp>II</scp> . Clinical Cardiology, 2021, 44, 1575-1585.	1.8	9
43	Detection and functional characterization of a novel <i>MEF2A</i> variation responsible for familial dilated cardiomyopathy. Clinical Chemistry and Laboratory Medicine, 2021, 59, 955-963.	2.3	9
44	The effects of subclinical hypothyroidism on serum lipid level and TLR4 expression of monocyte in peripheral blood of rats. Neuroendocrinology Letters, 2014, 35, 80-6.	0.2	7
45	Clinical Significance of A Single Multi-Slice CT Assessment in Patients with Coronary Chronic Total Occlusion Lesions Prior to Revascularization. PLoS ONE, 2014, 9, e98242.	2.5	6
46	ZBTB17 loss-of-function mutation contributes to familial dilated cardiomyopathy. Heart and Vessels, 2018, 33, 722-732.	1.2	5
47	Successful application of snareâ€kissingâ€catheter technique to implant leadless pacemaker in severely dilated right heart. PACE - Pacing and Clinical Electrophysiology, 2021, 44, 960-962.	1.2	5
48	Efficacy and safety of a novel multi-electrode radiofrequency ablation catheter for renal sympathetic denervation in pigs. Journal of Geriatric Cardiology, 2015, 12, 618-25.	0.2	5
49	Diagnostic performance of a wearing dynamic ECG recorder for atrial fibrillation screening: the HUAMI heart study. BMC Cardiovascular Disorders, 2021, 21, 558.	1.7	5
50	Targeting AMPK signalling pathway with natural medicines for atherosclerosis therapy: an integration of <i>in silico</i> screening and <i>in vitro</i> assay. Natural Product Research, 2016, 30, 1240-1247.	1.8	4
51	Transcatheter coil embolization of multiple coronary artery-to-left ventricle fistulas: report of a rare case. Chinese Medical Journal, 2008, 121, 1342-4.	2.3	3
52	Left Bundle Branch Conduction Recovery Following Left Bundle Branch Pacing in a Heart Failure Patient. JACC: Case Reports, 2019, 1, 592-596.	0.6	2
53	Culprit versus non-culprit lesion related adverse cardiac events in patients with obstructive sleep apnoea. Heart Asia, 2013, 5, 162-167.	1.1	1
54	Impact of prior permanent pacemaker on longâ€ŧerm clinical outcomes of patients undergoing percutaneous coronary intervention. Clinical Cardiology, 2017, 40, 205-209.	1.8	1

#	Article	IF	CITATIONS
55	Isolation, Culture, and Adipogenic Induction of Neural Crest Original Adipose-Derived Stem Cells from Periaortic Adipose Tissue. Journal of Visualized Experiments, 2020, , .	0.3	1
56	Osteoblast MR deficiency protects against adverse ventricular remodeling after myocardial infarction. Journal of Molecular and Cellular Cardiology, 2022, 167, 40-51.	1.9	1
57	Improvement of LV Reverse Remodeling Using Dynamic Programming of Fusion-Optimized Atrioventricular Intervals in Cardiac Resynchronization Therapy. Frontiers in Cardiovascular Medicine, 2021, 8, 700424.	2.4	0
58	THE VALUE OF TREADMILL EXERCISE TEST PARAMETERS TO PREDICT THE MARATHON PERFORMANCE OF YOUNG AND MIDDLE-AGED RECREATIONAL ATHLETES IN CHINA. Journal of Mechanics in Medicine and Biology, 2020, 20, 2050057.	0.7	0