Wei Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2685976/publications.pdf

Version: 2024-02-01

80	5,298	28 h-index	72
papers	citations		g-index
82	82	82	6746
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Covalent organic frameworks (COFs): from design to applications. Chemical Society Reviews, 2013, 42, 548-568.	38.1	2,945
2	To Fold or to Assemble?. Journal of the American Chemical Society, 2003, 125, 1120-1121.	13.7	218
3	Soft Vesicles Formed by Diblock Codendrimers of Poly(benzyl ether) and Poly(methallyl dichloride). Journal of the American Chemical Society, 2005, 127, 15107-15111.	13.7	150
4	Synthesis of Polyoxometalateâ^'Polymer Hybrid Polymers and Their Hybrid Vesicular Assembly. Macromolecules, 2009, 42, 6543-6548.	4.8	121
5	A photoconductive charge-transfer crystal with mixed-stacking donor–acceptor heterojunctions within the lattice. Chemical Communications, 2013, 49, 54-56.	4.1	91
6	Polyoxometalate–biomolecule conjugates: A new approach to create hybrid drugs for cancer therapeutics. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 1462-1466.	2.2	86
7	A Filledâ€Honeycombâ€Structured Crystal Formed by Selfâ€Assembly of a Janus Polyoxometalate–Silsesquioxane (POM–POSS) Coâ€Cluster. Angewandte Chemie - International Edition, 2015, 54, 15699-15704.	13.8	74
8	Crystal Pattern Formation and Transitions of PEO Monolayers on Solid Substrates from Nonequilibrium to near Equilibrium. Macromolecules, 2006, 39, 324-329.	4.8	73
9	Incorporation of Polyoxometalates into Polymers to Create Linear Poly(polyoxometalate)s with Catalytic Function. ACS Macro Letters, 2014, 3, 211-215.	4.8	72
10	Mesoscale Graphene-like Honeycomb Mono- and Multilayers Constructed via Self-Assembly of Coclusters. Journal of the American Chemical Society, 2018, 140, 1805-1811.	13.7	69
11	POM–Organic–POSS Cocluster: Creating A Dumbbell-Shaped Hybrid Molecule for Programming Hierarchical Supramolecular Nanostructures. Langmuir, 2013, 29, 5714-5722.	3.5	61
12	Covalently-linked polyoxometalate–polymer hybrids: optimizing synthesis, appealing structures and prospective applications. New Journal of Chemistry, 2016, 40, 886-897.	2.8	56
13	Spontaneous and Inductive Thickenings of Lamellar Crystal Monolayers of Low Molecular Weight PEO Fractions on Surface of Solid Substratesâ€. Macromolecules, 2005, 38, 1717-1722.	4.8	53
14	An Intriguing Morphology Evolution of Polyoxometalateâ€Polystyrene Hybrid Amphiphiles from Vesicles to Tubular Aggregates. Macromolecular Chemistry and Physics, 2011, 212, 81-87.	2.2	46
15	Unraveling the Self-Assembly of Heterocluster Janus Dumbbells into Hybrid Cubosomes with Internal Double-Diamond Structure. Journal of the American Chemical Society, 2019, 141, 831-839.	13.7	44
16	Fractal crystal growth of poly(ethylene oxide) crystals from its amorphous monolayers. Polymer, 2008, 49, 1629-1634.	3.8	43
17	A click chemistry approach to the efficient synthesis of polyoxometalate–polymer hybrids with well-defined structures. Polymer Chemistry, 2012, 3, 617.	3.9	42
18	Selfâ€Assembled Structures in Organogels of Amphiphilic Diblock Codendrimers. Chemistry - A European Journal, 2008, 14, 3330-3337.	3.3	38

#	Article	lF	Citations
19	Macromoleculeâ€toâ€Amphiphile Conversion Process of a Polyoxometalate–Polymer Hybrid and Assembled Hybrid Vesicles. Chemistry - A European Journal, 2012, 18, 11325-11333.	3.3	38
20	Polyoxometalate cluster-contained hybrid gelator and hybrid organogel: a new concept of softenization of polyoxometalate clusters. Soft Matter, 2011, 7, 2317.	2.7	36
21	Self-Assembling a Polyoxometalate–PEG Hybrid into a Nanoenhancer To Tailor PEG Properties. Macromolecules, 2015, 48, 2723-2730.	4.8	35
22	Manipulation of Ordered Nanostructures of Protonated Polyoxometalate through Covalently Bonded Modification. Chemistry - A European Journal, 2010, 16, 12545-12548.	3.3	34
23	Preparation of a Hydrophobic Polythiophene Film to Improve Protein Adsorption and Proliferation of PC 12 Cells. Journal of Physical Chemistry B, 2008, 112, 16290-16299.	2.6	32
24	Covalent immobilization of a polyoxometalate in a porous polymer matrix: a heterogeneous catalyst towards sustainability. RSC Advances, 2013, 3, 21544.	3.6	32
25	Codendronized Polymers:Â Wormlike Molecular Objects with a Segmented Structure. Macromolecules, 2007, 40, 9084-9093.	4.8	30
26	Morphology Diagram of Single-Layer Crystal Patterns in Supercooled Poly(ethylene oxide) Ultrathin Films: Understanding Macromolecular Effect of Crystal Pattern Formation and Selection. ACS Macro Letters, 2012, 1, 217-221.	4.8	30
27	Toward Cluster Materials with Ordered Structures via Selfâ€Assembly of Heterocluster Janus Molecules. Advanced Materials, 2020, 32, e1805863.	21.0	30
28	Solvent-mediated gel formation, hierarchical structures, and rheological properties of organogels. Soft Matter, 2015, 11, 741-748.	2.7	29
29	Synthesis and Self-Assembly of a Series of <i>n</i> POSS- <i>b</i> PEO Block Copolymers with Varying Shape Anisotropy. Macromolecules, 2017, 50, 3273-3284.	4.8	28
30	Enhancing Gelation Ability of a Dendritic Gelator through Complexation with a Polyelectrolyte. Chemistry - A European Journal, 2009, 15, 2352-2361.	3.3	27
31	Crystal growth pattern changes in low molecular weight poly(ethylene oxide) ultrathin films. Polymer, 2011, 52, 1133-1140.	3.8	27
32	Inserting polyoxomolybdate cluster into poly(É>-caprolactone) to create a class of new heteropolymer: Synthesis and supramolecular structures. Polymer, 2011, 52, 1772-1780.	3.8	26
33	Multiple H-Bonds Directed Self-Assembly of an Amphiphilic and Plate-Like Codendrimer with Janus Faces at Waterâ [^] Air Interface. Journal of the American Chemical Society, 2009, 131, 6283-6292.	13.7	25
34	Postâ€Functionalization of an Andersonâ€Type Polyoxomolybdate Using a Metalâ€Free Diels–Alder Click Reaction. European Journal of Inorganic Chemistry, 2013, 2013, 1381-1389.	2.0	25
35	Creating Quasi Two-Dimensional Cluster-Assembled Materials through Self-Assembly of a Janus Polyoxometalate-Silsesquioxane Co-Cluster. Langmuir, 2017, 33, 5283-5290.	3.5	25
36	Macromolecular effect on crystal pattern formation in ultra-thin films: Molecular segregation in a binary blend of PEO fractions. Polymer, 2009, 50, 6157-6165.	3.8	22

#	Article	IF	Citations
37	Langmuir and Langmuir–Blodgett Films of Hybrid Amphiphiles with a Polyoxometalate Headgroup. Langmuir, 2013, 29, 6537-6545.	3.5	22
38	A poly(polyoxometalate)-b-poly(hexanoic acid) block copolymer: synthesis, self-assembled micelles and catalytic activity. Polymer Chemistry, 2015, 6, 7418-7426.	3.9	22
39	Thickening Process and Kinetics of Lamellar Crystals of a Low Molecular Weight Poly(ethylene oxide). Macromolecules, 2007, 40, 4386-4388.	4.8	19
40	Topological transformation of aggregates formed by an amphiphilic and truncated-cone-shaped codendrimer. Soft Matter, 2007, 3, 1372.	2.7	19
41	Dendritic-to-faceted crystal pattern transition of ultrathin poly(ethylene oxide) films. Journal of Chemical Physics, 2008, 129, 224708.	3.0	19
42	Salt-Induced Aggregation of Polyelectrolyteâ^'Amphiphilic Dendron Complexes in THF Solutions. Langmuir, 2009, 25, 2075-2080.	3.5	19
43	Labyrinthine pattern of polymer crystals from supercooled ultrathin films. Polymer, 2010, 51, 554-562.	3.8	18
44	Layered Structure and Order-to-Disorder Transition in a Block Codendrimer Caused by Intermolecular Hydrogen Bonds. Macromolecules, 2006, 39, 3982-3985.	4.8	17
45	Bottomâ€Up Hybridization: A Strategy for the Preparation of a Thermostable Polyoxometalate–Polymer Hybrid with Hierarchical Hybrid Structures. ChemPlusChem, 2014, 79, 1455-1462.	2.8	17
46	Synthesis and Cylinder Microdomain Structures of Hybrid Block Copolymers of π-Conjugated and Dendritic Poly(phenylazomethine)s and Flexible and Linear PEO. Macromolecules, 2007, 40, 2606-2612.	4.8	16
47	Gelation and fluorescent organogels of a complex of perylenetetracarboxylic tetraacid with cationic surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 375, 156-162.	4.7	16
48	Dendronized copolymers functionalized with crown ethers and their reversible modification through host–guest interaction. Journal of Polymer Science Part A, 2010, 48, 3515-3522.	2.3	15
49	Correlation between gel-forming ability, supramolecular aggregates and main-chain conformation of dendronized polymer gelators. New Journal of Chemistry, 2011, 35, 103-110.	2.8	15
50	Tube- <i>graft</i> -Sheet Nano-Objects Created by A Stepwise Self-Assembly of Polymer-Polyoxometalate Hybrids. Langmuir, 2016, 32, 460-467.	3.5	14
51	Ionic self-assembled derivatives of perylenetetracarboxylic dianhydride: facile synthesis, morphology and structures. New Journal of Chemistry, 2009, 33, 784.	2.8	13
52	Synthesis and Self-Assembled Structure of A Cluster-Cluster Hybrid Molecule Composed of POM and POSS Clusters. Acta Chimica Sinica, 2014, 72, 61.	1.4	13
53	Alternating Crystalline-Amorphous Layers in Hybrid Block Copolymers of Linear Poly(ethylene glycol) and Dendritic Poly(benzyl ether). Macromolecular Chemistry and Physics, 2004, 205, 1410-1417.	2.2	12
54	Thickening Processes of Lamellar Crystal Monolayers of a Low-Molecular-Weight PEO Fraction on a Solid Surface. Macromolecular Chemistry and Physics, 2007, 208, 651-657.	2.2	12

#	Article	lF	CITATIONS
55	Enhanced thermal stability of organogels through self-reinforcing supramolecular assembly of a cholesterol–polyoxomatalate–cholesterol hybrid gelator. RSC Advances, 2014, 4, 1138-1145.	3.6	12
56	Selfâ€Assembly of Achiral Shape Amphiphiles into Multiâ€Walled Nanotubes via Helicityâ€6elective Nucleation and Growth. Chemistry - an Asian Journal, 2018, 13, 775-779.	3.3	12
57	Insights into the Self-Assembly of a Heterocluster Janus Molecule into Colloidal Onions. Langmuir, 2019, 35, 6727-6734.	3.5	12
58	Multi-POSS cluster-wrapped polymers and their block copolymers with a PEO bottlebrush polymer: synthesis and aggregation. Polymer Chemistry, 2017, 8, 6824-6833.	3.9	11
59	Unravelling concentration-regulated self-assembly of a protonated polyoxometalate-polystyrene hybrid. Polymer, 2019, 162, 73-79.	3.8	11
60	Self-assembly of the polyoxometalate–cholesterol conjugate into microrods or nanoribbons regulated by thermodynamics. New Journal of Chemistry, 2016, 40, 954-961.	2.8	10
61	Twining Poly(polyoxometalate) Chains into Nanoropes. Chemistry - A European Journal, 2019, 25, 13396-13401.	3.3	10
62	Fine Structures in the Spherulites of Regioregular Poly(3-dodecylthiophene). Macromolecular Chemistry and Physics, 2004, 205, 1269-1273.	2.2	8
63	Polyelectrolytes of Inorganic Polyoxometalates: Acids, Salts, and Complexes. Macromolecules, 2021, 54, 6891-6900.	4.8	8
64	Langmuir and of Langmuir-Blodgett Films of Two Dumbbell-shaped Hybrids Composed of A Polyoxometallate and Two Polyhedral Oligosilsesquioxanes. Acta Chimica Sinica, 2015, 73, 441.	1.4	7
65	Gyroid nanostructure through manipulation of unique molecular shape, polarity and functionalization of a Janus amphiphilic codendrimer. Soft Matter, 2012, 8, 9545.	2.7	6
66	Molecular weight dependence of crystal pattern transitions of poly(ethylene oxide). Chinese Journal of Polymer Science (English Edition), 2013, 31, 798-808.	3.8	6
67	Visualization of Two-dimensional Single Chains of Hybrid Polyelectrolytes on Solid Surface. Chinese Journal of Polymer Science (English Edition), 2021, 39, 716.	3.8	6
68	Symmetry and Topology of Twin Boundaries and Five-Fold Twin Boundaries in Soft Crystals. Langmuir, 2021, 37, 10291-10297.	3.5	6
69	Enhancement in proton conductivity by blending poly(polyoxometalate)-b-poly(hexanoic acid) block copolymers with sulfonated polysulfone. International Journal of Hydrogen Energy, 2020, 45, 15495-15506.	7.1	6
70	Synthesis of Proton Conductive Copolymers of Inorganic Polyacid Cluster Polyelectrolytes and PEO Bottlebrush Polymers. Macromolecules, 2022, 55, 3301-3310.	4.8	6
71	Preparation of belt-like aggregates of a perylene derivative. Materials Letters, 2009, 63, 409-411.	2.6	5
72	Ribbonlike Assembly of Molecules Composed of Fulleropyrrolidine and PUA Dendron. Langmuir, 2010, 26, 9403-9407.	3.5	5

#	Article	IF	CITATION
73	A conformation study of polyelectrolyte-dendritic surfactant complexes in dilute solutions. Chinese Journal of Polymer Science (English Edition), 2010, 28, 395-404.	3.8	4
74	Chirality and chiral functional composites of bicontinuous cubic nanostructured cubosomes. Chinese Chemical Letters, 2022, 33, 1488-1492.	9.0	4
75	Norfloxacin-derivative functionalized octamolybdate: unusual carbonyl coordination and acidity sensitive luminescence. RSC Advances, 2015, 5, 40688-40691.	3.6	3
76	Chiral functional composites with broadening absorption and Modulatable Cotton effect. Composites Communications, 2021, 27, 100859.	6.3	3
77	Precise Self-assembly of Janus Pyramid Heteroclusters into Core-Corona Nanodots and Nanodot Supracrystals: Implications for the Construction of Virus-like Particles and Nanomaterials. ACS Applied Nano Materials, 2022, 5, 5558-5568.	5.0	3
78	Organic Molecule-Ionic Solids of Structurally Mismatched Ion Pairs Formed via Attractive Interactions. Crystal Growth and Design, 2022, 22, 1212-1220.	3.0	2
79	Solvent-manipulated self-assembly of a heterocluster Janus molecule into multi-dimensional nanostructures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, , 127847.	4.7	1
80	A bottom-up design strategy for controllable self-assembly based on the isotropic double-well potential. Physical Chemistry Chemical Physics, 2022, , .	2.8	0