Daniel J Perry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2685373/publications.pdf Version: 2024-02-01

DANIEL I DEDDV

#	Article	IF	CITATIONS
1	Guidelines for standardizing Tâ€cell cytometry assays to link biomarkers, mechanisms, and disease outcomes in type 1 diabetes. European Journal of Immunology, 2022, 52, 372-388.	2.9	10
2	Improving the Prediction of Type 1 Diabetes Across Ancestries. Diabetes Care, 2022, 45, e48-e50.	8.6	7
3	Genetic Composition and Autoantibody Titers Model the Probability of Detecting C-Peptide Following Type 1 Diabetes Diagnosis. Diabetes, 2021, 70, 932-943.	0.6	8
4	Exocrine Pancreatic Enzymes Are a Serological Biomarker for Type 1 Diabetes Staging and Pancreas Size. Diabetes, 2021, 70, 944-954.	0.6	20
5	Deâ€ <i>coding</i> genetic risk variants in type 1 diabetes. Immunology and Cell Biology, 2021, 99, 496-508.	2.3	26
6	TCR+/BCR+ dual-expressing cells and their associated public BCR clonotype are not enriched in type 1 diabetes. Cell, 2021, 184, 827-839.e14.	28.9	16
7	Overexpression of the <i>PTPN22</i> Autoimmune Risk Variant LYP-620W Fails to Restrain Human CD4+ T Cell Activation. Journal of Immunology, 2021, 207, 849-859.	0.8	7
8	CAR- and TRuC-redirected regulatory T cells differ in capacity to control adaptive immunity to FVIII. Molecular Therapy, 2021, 29, 2660-2676.	8.2	28
9	Use of Induced Pluripotent Stem Cells to Build Isogenic Systems and Investigate Type 1 Diabetes. Frontiers in Endocrinology, 2021, 12, 737276.	3.5	8
10	Immunophenotyping reveals distinct subgroups of lupus patients based on their activated T cell subsets. Clinical Immunology, 2020, 221, 108602.	3.2	10
11	A Novel Mutation in Insulin-Like Growth Factor 1 Receptor (c.641-2A>G) Is Associated with Impaired Growth, Hypoglycemia, and Modified Immune Phenotypes. Hormone Research in Paediatrics, 2020, 93, 322-334.	1.8	3
12	Human Regulatory T Cells From Umbilical Cord Blood Display Increased Repertoire Diversity and Lineage Stability Relative to Adult Peripheral Blood. Frontiers in Immunology, 2020, 11, 611.	4.8	23
13	Synchronization of the Normal Human Peripheral Immune System: A Comprehensive Circadian Systems Immunology Analysis. Scientific Reports, 2020, 10, 672.	3.3	19
14	Innate inflammation drives NK cell activation to impair Treg activity. Journal of Autoimmunity, 2020, 108, 102417.	6.5	36
15	Application of a Genetic Risk Score to Racially Diverse Type 1 Diabetes Populations Demonstrates the Need for Diversity in Risk-Modeling. Scientific Reports, 2018, 8, 4529.	3.3	59
16	Immune Mechanisms and Pathways Targeted in Type 1 Diabetes. Current Diabetes Reports, 2018, 18, 90.	4.2	29
17	Clinical Applications of Regulatory T cells in Adoptive Cell Therapies. Cell & Gene Therapy Insights, 2018, 4, 405-429.	0.1	14
18	T cells display mitochondria hyperpolarization in human type 1 diabetes. Scientific Reports, 2017, 7, 10835.	3.3	34

DANIEL J PERRY

#	Article	IF	CITATIONS
19	Lactobacillus johnsonii N6.2 Modulates the Host Immune Responses: A Double-Blind, Randomized Trial in Healthy Adults. Frontiers in Immunology, 2017, 8, 655.	4.8	73
20	Antithymocyte Globulin Plus G-CSF Combination Therapy Leads to Sustained Immunomodulatory and Metabolic Effects in a Subset of Responders With Established Type 1 Diabetes. Diabetes, 2016, 65, 3765-3775.	0.6	62
21	Divergent Phenotypes of Human Regulatory T Cells Expressing the Receptors TIGIT and CD226. Journal of Immunology, 2015, 195, 145-155.	0.8	219
22	Normalization of CD4 ⁺ T cell metabolism reverses lupus. Science Translational Medicine, 2015, 7, 274ra18.	12.4	502
23	Murine Lupus Susceptibility Locus <i>Sle1c2</i> Mediates CD4+ T Cell Activation and Maps to Estrogen-Related Receptor γ. Journal of Immunology, 2012, 189, 793-803.	0.8	55
24	Autologous Regulatory T Cells for the Treatment of Type 1 Diabetes. Current Diabetes Reports, 2012, 12, 623-632.	4.2	18
25	Cyclin-Dependent Kinase Inhibitor <i>Cdkn2c</i> Regulates B Cell Homeostasis and Function in the NZM2410-Derived Murine Lupus Susceptibility Locus <i>Sle2c1</i> . Journal of Immunology, 2011, 186, 6673-6682.	0.8	30
26	Murine Models of Systemic Lupus Erythematosus. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-19.	3.0	306
27	The Current Concept of T _H 17 Cells and Their Expanding Role in Systemic Lupus Erythematosus. Arthritis, 2011, 2011, 1-10.	2.0	19
28	Expression of the autoimmune Fcgr2b NZW allele fails to be upregulated in germinal center B cells and is associated with increased IgG production. Genes and Immunity, 2007, 8, 604-612.	4.1	36
29	Several Genes Contribute to the Production of Autoreactive B and T Cells in the Murine Lupus Susceptibility Locus <i>Sle1c</i> . Journal of Immunology, 2005, 175, 1080-1089.	0.8	34