Zhaochi Feng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2685032/publications.pdf

Version: 2024-02-01

99 papers 6,302 citations

71102 41 h-index 69250 77 g-index

104 all docs

104 docs citations

times ranked

104

7403 citing authors

#	Article	IF	CITATIONS
1	A highly selective and stable ZnO-ZrO ₂ solid solution catalyst for CO ₂ hydrogenation to methanol. Science Advances, 2017, 3, e1701290.	10.3	683
2	Highly Selective Conversion of Carbon Dioxide to Lower Olefins. ACS Catalysis, 2017, 7, 8544-8548.	11.2	387
3	Direct Imaging of Highly Anisotropic Photogenerated Charge Separations on Different Facets of a Single BiVO ₄ Photocatalyst. Angewandte Chemie - International Edition, 2015, 54, 9111-9114.	13.8	284
4	Phase Transformation in the Surface Region of Zirconia Detected by UV Raman Spectroscopy. Journal of Physical Chemistry B, 2001, 105, 8107-8111.	2.6	254
5	Direct Synthesis of Alâ^'SBA-15 Mesoporous Materials via Hydrolysis-Controlled Approach. Journal of Physical Chemistry B, 2004, 108, 9739-9744.	2.6	236
6	Sustainable Synthesis of Zeolites without Addition of Both Organotemplates and Solvents. Journal of the American Chemical Society, 2014, 136, 4019-4025.	13.7	233
7	Direct synthesis of highly ordered Fe-SBA-15 mesoporous materials under weak acidic conditions. Microporous and Mesoporous Materials, 2005, 84, 41-49.	4.4	181
8	Identifying Framework Titanium in TS-1 Zeolite by UV Resonance Raman Spectroscopy. Journal of Physical Chemistry B, 2001, 105, 2993-2997.	2.6	144
9	Structure and Redox Properties of CexTi1-xO2Solid Solution. Chemistry of Materials, 2001, 13, 197-202.	6.7	142
10	UV Raman Spectroscopic Studies on Active Sites and Synthesis Mechanisms of Transition Metal-Containing Microporous and Mesoporous Materials. Accounts of Chemical Research, 2010, 43, 378-387.	15.6	140
11	A Thorough Investigation of the Active Titanium Species in TSâ€1 Zeolite by In Situ UV Resonance Raman Spectroscopy. Chemistry - A European Journal, 2012, 18, 13854-13860.	3.3	137
12	Highly Efficient Dehydrogenation of Primary Aliphatic Alcohols Catalyzed by Cu Nanoparticles Dispersed on Rod-Shaped La ₂ O ₂ CO ₃ . ACS Catalysis, 2013, 3, 890-894.	11.2	115
13	Water-Stable Nickel Metal–Organic Framework Nanobelts for Cocatalyst-Free Photocatalytic Water Splitting to Produce Hydrogen. Journal of the American Chemical Society, 2022, 144, 2747-2754.	13.7	109
14	Construction of unique six-coordinated titanium species with an organic amine ligand in titanosilicate and their unprecedented high efficiency for alkene epoxidation. Chemical Communications, 2015, 51, 9010-9013.	4.1	107
15	Transfer of Photoinduced Electrons in Anatase–Rutile TiO ₂ Determined by Time-Resolved Mid-Infrared Spectroscopy. Journal of Physical Chemistry C, 2014, 118, 12661-12668.	3.1	102
16	Effect of Phase Junction Structure on the Photocatalytic Performance in Overall Water Splitting: Ga ₂ O ₃ Photocatalyst as an Example. Journal of Physical Chemistry C, 2015, 119, 18221-18228.	3.1	101
17	UV Raman spectroscopic study on the synthesis mechanism and assembly of molecular sieves. Chemical Society Reviews, 2010, 39, 4794.	38.1	99
18	Size effect of lead-free halide double perovskite on luminescence property. Science China Chemistry, 2019, 62, 1405-1413.	8.2	95

#	Article	IF	CITATIONS
19	From Molecular Fragments to Crystals: A UV Raman Spectroscopic Study on the Mechanism of Feâ€ZSMâ€5 Synthesis. Chemistry - A European Journal, 2009, 15, 3268-3276.	3.3	89
20	Tiâ^'MCM-41 Synthesized from Colloidal Silica and Titanium Trichloride: Synthesis, Characterization, and Catalysis. Chemistry of Materials, 2001, 13, 994-998.	6.7	78
21	Insights of the Crystallization Process of Molecular Sieve AlPO ₄ -5 Prepared by Solvent-Free Synthesis. Journal of the American Chemical Society, 2016, 138, 6171-6176.	13.7	77
22	Intermediate-crystallization promoted catalytic activity of titanosilicate zeolites. Journal of Materials Chemistry A, 2018, 6, 8757-8762.	10.3	77
23	Boosting Performance of Nonâ€Fullerene Organic Solar Cells by 2D g ₃ N ₄ Doped PEDOT:PSS. Advanced Functional Materials, 2020, 30, 1910205.	14.9	77
24	Visibleâ€Lightâ€Driven Photocatalytic Hydrogen Production on Cd _{0.5} Zn _{0.5} S Nanorods with an Apparent Quantum Efficiency Exceeding 80%. Advanced Functional Materials, 2020, 30, 2003731.	14.9	76
25	In Situ UV Raman Spectroscopic Studies on the Synthesis Mechanism of Zeolite X. Chemistry - A European Journal, 2008, 14, 5125-5129.	3.3	75
26	Phase transformation in the surface region of zirconia and doped zirconia detected by UV Raman spectroscopy. Physical Chemistry Chemical Physics, 2003, 5, 5326.	2.8	73
27	In Situ UV Raman Spectroscopic Study on the Synthesis Mechanism of AlPOâ€5. Angewandte Chemie - International Edition, 2009, 48, 8743-8747.	13.8	72
28	Direct spectroscopic evidence for vanadium species in V-MCM-41 molecular sieve characterized by UV resonance Raman spectroscopy. Chemical Communications, 2000, , 677-678.	4.1	69
29	Framework Fe Ions in Fe-ZSM-5 Zeolite Studied by UV Resonance Raman Spectroscopy and Density Functional Theory Calculations. Journal of Physical Chemistry C, 2008, 112, 16036-16041.	3.1	64
30	Preparation and Adsorption Properties for Thiophene of Nanostructured W2C on Ultrahigh-Surface-Area Carbon Materials. Chemistry of Materials, 2003, 15, 4846-4853.	6.7	62
31	The effect of oxygen on the aromatization of methane over the Mo/HZSMâ€5 catalyst. Catalysis Letters, 1999, 63, 73-77.	2.6	61
32	K ₂ SO ₄ -Assisted Hexagonal/Monoclinic WO ₃ Phase Junction for Efficient Photocatalytic Degradation of RhB. ACS Applied Energy Materials, 2018, 1, 2067-2077.	5.1	61
33	UV–Raman and NMR Spectroscopic Studies on the Crystallization of Zeoliteâ€A and a New Synthetic Route. Chemistry - A European Journal, 2011, 17, 6162-6169.	3.3	56
34	Finding the "Missing Components―during the Synthesis of TS-1 Zeolite by UV Resonance Raman Spectroscopy. Journal of Physical Chemistry C, 2013, 117, 2844-2848.	3.1	56
35	Shape-Controlled Copper Selenide Nanocubes Synthesized by an Electrochemical Crystallization Method. Journal of Physical Chemistry C, 2009, 113, 10833-10837.	3.1	48
36	Sustainable Synthesis of Pure Silica Zeolites from a Combined Strategy of Zeolite Seeding and Alcohol Filling. Angewandte Chemie - International Edition, 2019, 58, 12138-12142.	13.8	47

#	Article	IF	CITATIONS
37	Evolution of D6R units in the interzeolite transformation from FAU, MFI or *BEA into AEI: transfer or reassembly?. Inorganic Chemistry Frontiers, 2020, 7, 2204-2211.	6.0	47
38	Interzeolite transformation from FAU to CHA and MFI zeolites monitored by UV Raman spectroscopy. Chinese Journal of Catalysis, 2019, 40, 1854-1859.	14.0	46
39	Role of Oxygen Vacancies on Oxygen Evolution Reaction Activity: β-Ga ₂ O ₃ as a Case Study. Chemistry of Materials, 2018, 30, 7714-7726.	6.7	43
40	An amino acid-assisted approach to fabricate nanosized hierarchical TS-1 zeolites for efficient oxidative desulfurization. Inorganic Chemistry Frontiers, 2020, 7, 1975-1980.	6.0	42
41	UV Raman Spectroscopic Characterization of Catalysts and Catalytic Active Sites. Catalysis Letters, 2015, 145, 468-481.	2.6	40
42	Surface Phase Composition of Iron Molybdate Catalysts Studied by UV Raman Spectroscopy. Journal of Physical Chemistry C, 2008, 112, 9387-9393.	3.1	39
43	Influence of extra-framework Al on the structure of the active iron sites in Fe/ZSM-35. Journal of Catalysis, 2013, 300, 251-259.	6.2	35
44	Temperature-regulated construction of hierarchical titanosilicate zeolites. Inorganic Chemistry Frontiers, 2020, 7, 1872-1879.	6.0	35
45	Template-Free Synthesis of Sphere, Rod and Prism Morphologies of CeO2 Oxidation Catalysts. Catalysis Letters, 2010, 137, 28-34.	2.6	34
46	The visible luminescent characteristics of ZnO supported on SiO2powder. Physical Chemistry Chemical Physics, 2004, 6, 4473-4479.	2.8	33
47	An IR study on the surface passivation of Mo2C/Al2O3 catalyst with O2, H2O and CO2. Physical Chemistry Chemical Physics, 2004, 6, 5603.	2.8	33
48	Hydroxylated non-fullerene acceptor for highly efficient inverted perovskite solar cells. Energy and Environmental Science, 2021, 14, 6536-6545.	30.8	33
49	Reevaluation of the stability of G-quadruplex structures under crowding conditions. Biochimie, 2016, 121, 204-208.	2.6	30
50	Titanosilicate zeolite precursors for highly efficient oxidation reactions. Chemical Science, 2020, 11, 12341-12349.	7.4	29
51	Organotemplate-free and one-pot fabrication of nano-rod assembled plate-like micro-sized mordenite crystals. Journal of Materials Chemistry, 2012, 22, 6564.	6.7	28
52	Preparation and characterization of ordered mesoporous carbons on SBA-15 template. Journal of Materials Chemistry, 2006, 16, 1350.	6.7	27
53	Amino acid-assisted synthesis of TS-1 zeolites containing highly catalytically active TiO6 species. Chinese Journal of Catalysis, 2021, 42, 2189-2196.	14.0	27
54	Carbon Monoxide Adsorption on Molybdenum Phosphides:Â Fourier Transform Infrared Spectroscopic and Density Functional Theory Studies. Journal of Physical Chemistry B, 2003, 107, 13698-13702.	2.6	26

#	Article	IF	CITATIONS
55	Catalytic production of low-carbon footprint sustainable natural gas. Nature Communications, 2022, 13, 258.	12.8	26
56	The Synthesis of Three-Dimensional CeO2 and Their Catalytic Activities for CO Oxidation. Catalysis Letters, 2009, 131, 350-355.	2.6	23
57	Unravelling the water oxidation mechanism on NaTaO ₃ -based photocatalysts. Journal of Materials Chemistry A, 2020, 8, 6812-6821.	10.3	23
58	Catalytic performance of different types of iron zeolites in N2O decomposition. Chinese Journal of Catalysis, 2013, 34, 876-888.	14.0	22
59	Identification of Fe2($\hat{1}$ ¼-O) and Fe2($\hat{1}$ ¼-O)2 sites in Fe/ZSM-35 by in situ resonance Raman spectroscopy. Journal of Catalysis, 2013, 301, 77-82.	6.2	21
60	Charge-Sensitive Surface Optical Phonon in CdS Quantum Dots Studied by Resonant Raman Spectroscopy. Journal of Physical Chemistry C, 2014, 118, 30269-30273.	3.1	21
61	Bimodal hole transport in bulk BiVO ₄ from computation. Journal of Materials Chemistry A, 2018, 6, 3714-3723.	10.3	20
62	Photo-induced H2 production from a CH3OH-H2O solution at insulator surface. Scientific Reports, 2015, 5, 13475.	3.3	19
63	Mechanistic Studies on Photocatalytic Overall Water Splitting over Ga ₂ O ₃ -Based Photocatalysts by <i>Operando</i> MS-FTIR Spectroscopy. Journal of Physical Chemistry Letters, 2021, 12, 6029-6033.	4.6	19
64	Deep UV resonance Raman spectroscopic study of CnF2n+2molecules: the excitation of C-C If bond. Journal of Raman Spectroscopy, 2013, 44, 266-269.	2.5	18
65	Mechanism of alkane H/D exchange over zeolite H-ZSM-5 at low temperature: a combined computational and experimental study. Catalysis Science and Technology, 2016, 6, 5350-5363.	4.1	18
66	Aluminium-containing mesoporous benzene-silicas with crystal-like pore wall structure. Journal of Materials Chemistry, 2005, 15, 4268.	6.7	17
67	Dual Extraction of Photogenerated Electrons and Holes from a Ferroelectric Sr _{0.5} Ba _{0.5} Nb ₂ O ₆ Semiconductor. ACS Applied Materials & Samp; Interfaces, 2016, 8, 13857-13864.	8.0	16
68	Roles of adsorption sites in electron transfer from CdS quantum dots to molecular catalyst cobaloxime studied by time-resolved spectroscopy. Physical Chemistry Chemical Physics, 2016, 18, 17389-17397.	2.8	16
69	Atomically unraveling the dependence of surface microstructure on plasmon-induced hydrogen evolution on Au/SrTiO3. Nano Energy, 2022, 91, 106638.	16.0	16
70	Fourier Transform Infrared Spectroscopic Study on the Adsorption of Ethyl Pyruvate on Pt/Al2O3:  Side Reactions Suppressed by Adsorbed Hydrogen and Cinchonidine. Journal of Physical Chemistry C, 2007, 111, 823-829.	3.1	15
71	Solventâ€Free Synthesis of <scp>ITQ</scp> â€12, <scp>ITQ</scp> â€13, and <scp>ITQ</scp> â€17 Zeolites. Chine Journal of Chemistry, 2017, 35, 572-576.	ese 4.9	15
72	Surface-enhanced Raman scattering of xanthopterin adsorbed on colloidal silver. Journal of Raman Spectroscopy, 2001, 32, 1004-1007.	2.5	12

#	Article	IF	CITATIONS
73	Catalytic Performance of the Sb–V Mixed Oxide on Sb–V–O/SiO2 Catalysts in Methane Selective Oxidation to Formaldehyde. Catalysis Letters, 2006, 106, 89-93.	2.6	12
74	A Short-Wavelength Raman Optical Activity Spectrometer with Laser Source at 457 nm for the Characterization of Chiral Molecules. Applied Spectroscopy, 2017, 71, 2211-2217.	2.2	12
75	Crystallinity and Orientation Manipulation of Anthracene Diimide Polymers for Allâ€Polymer Solar Cells. Advanced Functional Materials, 2021, 31, 2011049.	14.9	12
76	Adsorption and reaction of thiophene and H2S on Mo2C/Al2O3 catalyst studied by in situ FT-IR spectroscopy. Physical Chemistry Chemical Physics, 2004, 6, 5596.	2.8	10
77	Note: Deep ultraviolet Raman spectrograph with the laser excitation line down to 177.3 nm and its application. Review of Scientific Instruments, 2014, 85, 046105.	1.3	10
78	Urea Derivativeâ€Promoted CsPbI ₂ Br Perovskite Solar Cells with High Openâ€Circuit Voltage. Solar Rrl, 2022, 6, 2101057.	5.8	10
79	Structure and Basicity of Microporous Titanosilicate ETS-10 and Vanadium-Containing ETS-10. Journal of Physical Chemistry C, 2012, 116, 17124-17133.	3.1	9
80	Hydrogen bonding in homochiral dimers of hydroxyesters studied by Raman optical activity spectroscopy. Journal of Raman Spectroscopy, 2012, 43, 503-513.	2.5	9
81	A novel synthetic strategy of Fe-ZSM-35 with pure framework Fe species and its formation mechanism. Inorganic Chemistry Frontiers, 2018, 5, 2031-2037.	6.0	9
82	Coadsorption of trimethyl phosphine and thiocyanate on colloidal silver: a SERS study combined with theoretical calculations. Journal of Raman Spectroscopy, 2009, 40, 387-393.	2.5	8
83	Directly probing redox-linked quinones in photosystem II membrane fragments via UV resonance Raman scattering. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 558-564.	1.0	8
84	Deep UV resonance Raman spectroscopic study on electronâ€phonon coupling in hexagonal Illâ€nitride wide bandgap semiconductors. Journal of Raman Spectroscopy, 2016, 47, 884-887.	2.5	8
85	Solventâ€free gasâ€phase epoxidation of propylene in fluidized bed reactor. AICHE Journal, 2021, 67, e17218.	3.6	8
86	Algebraic approach to stretching vibrational spectrum of H2S. Science Bulletin, 1999, 44, 1961-1964.	1.7	7
87	Enhancing photoresponsivity of self-powered UV photodetectors based on electrochemically reduced TiO ₂ nanorods. RSC Advances, 2015, 5, 95939-95942.	3.6	7
88	The High-PerformanceÂHollow Silicalite-1@Titanium Silicalite-1ÂCore-Shell Catalyst for Propene Epoxidation. ChemistrySelect, 2017, 2, 10097-10100.	1.5	7
89	Effect of Sodium Ions on Catalytic Performance of TS-1 in Gas-Phase Epoxidation of Propylene with Hydrogen Peroxide Vapor. Catalysis Letters, 2020, 150, 281-290.	2.6	7
90	Co-Crystalline ZSM-5/ZSM-11 Nanostructures for Alkylation of Benzene with Ethanol. ACS Applied Nano Materials, 2021, 4, 10296-10306.	5.0	7

ZHAOCHI FENG

#	Article	IF	CITATIONS
91	Alkali-hydrolysis of D-glucono-delta-lactone studied by chiral Raman and circular dichroism spectroscopies. Science in China Series B: Chemistry, 2009, 52, 552-558.	0.8	6
92	Liquid-Phase Epoxidation of Propylene with H ₂ O ₂ over TS-1 Zeolite: Impurity Formation and Inhibition Study. Industrial & Engineering Chemistry Research, 2021, 60, 12109-12122.	3.7	6
93	Multifunctional human serum albumin in the surfaceâ€enhanced Raman spectroscopy of porphyrin: demetalation promoter, molecular spacer and stabilizer. Journal of Raman Spectroscopy, 2010, 41, 1615-1620.	2.5	5
94	Stereostructural Elucidation of Glucose Phosphorylation by Raman Optical Activity. Journal of Physical Chemistry B, 2019, 123, 7794-7800.	2.6	5
95	V–O–Ag Linkages in VAgO <i></i> Mixed Oxides for the Selective Oxidation of <i>p</i> -Xylene to <i>p</i> -Methyl Benzaldehyde. ACS Catalysis, 2022, 12, 3323-3332.	11.2	5
96	Designing a Z-scheme system based on photocatalyst panels towards separated hydrogen and oxygen production from overall water splitting. Catalysis Science and Technology, 2022, 12, 572-578.	4.1	4
97	Sustainable Synthesis of Pure Silica Zeolites from a Combined Strategy of Zeolite Seeding and Alcohol Filling. Angewandte Chemie, 2019, 131, 12266-12270.	2.0	3
98	Static Synthesis and Crystallization Mechanism of ZSM-35 Zeolite. Chinese Journal of Catalysis, 2010, 31, 788-792.	14.0	1
99	Rücktitelbild: Photocatalytic Overall Water Splitting Promoted by an α-βâ€phase Junction on Ga2O3(Angew. Chem. 52/2012). Angewandte Chemie, 2012, 124, 13356-13356.	2.0	0