Guangchen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2684785/publications.pdf Version: 2024-02-01

CHANCCHEN

#	Article	IF	CITATIONS
1	Evaluation of Urea-Based Inhibitors of the Dopamine Transporter Using the Experimental Autoimmune Encephalomyelitis Model of Multiple Sclerosis. ACS Chemical Neuroscience, 2022, , .	3.5	2
2	Two Curcumin Extracts Modify Composition of Gut Microbiota, Tight Junction Protein, and Neuroinflammation in Rats With Neuropathic Pain: Microbiota-Gut-Brain Axis. Current Developments in Nutrition, 2022, 6, 809.	0.3	0
3	Ginger Root Extract Mitigates Neuropathic Pain via Suppressing Neuroinflammation: Gut-Brain Connection. Current Developments in Nutrition, 2022, 6, 808.	0.3	2
4	Curcumin and Curcuminoid Effects Modulating Chronic Mechanical Sensitivity in Spinal Nerve Ligation Model Revert Mitochondria Dysfunction and Oxidative Stress. Current Developments in Nutrition, 2022, 6, 333.	0.3	0
5	Kappa opioid receptor activation in the amygdala disinhibits CRF neurons to generate pain-like behaviors. Neuropharmacology, 2021, 185, 108456.	4.1	25
6	Optogenetic Manipulations of Amygdala Neurons Modulate Spinal Nociceptive Processing and Behavior Under Normal Conditions and in an Arthritis Pain Model. Frontiers in Pharmacology, 2021, 12, 668337.	3.5	18
7	Dysfunction of Glutamate Delta-1 Receptor-Cerebellin 1 Trans-Synaptic Signaling in the Central Amygdala in Chronic Pain. Cells, 2021, 10, 2644.	4.1	6
8	Fear Extinction-Based Inter-Individual and Sex Differences in Pain-Related Vocalizations and Anxiety-like Behaviors but Not Nocifensive Reflexes. Brain Sciences, 2021, 11, 1339.	2.3	11
9	Dietary Supplementation of Gingerols- and Shogaols-Enriched Ginger Root Extracts Attenuate Pain-Associated Behaviors in Animals with Spinal Nerve Ligation. Current Developments in Nutrition, 2020, 4, nzaa040_074.	0.3	1
10	Kappa opioid receptors in the central amygdala modulate spinal nociceptive processing through an action on amygdala CRF neurons. Molecular Brain, 2020, 13, 128.	2.6	18
11	Amygdala, neuropeptides, and chronic pain-related affective behaviors. Neuropharmacology, 2020, 170, 108052.	4.1	109
12	Contribution of Corticotropin-Releasing Factor Receptor 1 (CRF1) to Serotonin Receptor 5-HT2CR Function in Amygdala Neurons in a Neuropathic Pain Model. International Journal of Molecular Sciences, 2019, 20, 4380.	4.1	15
13	Kappa opioid signaling in the central nucleus of the amygdala promotes disinhibition and aversiveness of chronic neuropathic pain. Pain, 2019, 160, 824-832.	4.2	75
14	Optical tissue clearing in combination with perfusion and immunofluorescence for placental vascular imaging. Medicine (United States), 2018, 97, e12392.	1.0	11
15	Fear extinction learning ability predicts neuropathic pain behaviors and amygdala activity in male rats. Molecular Pain, 2018, 14, 174480691880444.	2.1	29
16	Small conductance calcium activated potassium (SK) channel dependent and independent effects of riluzole on neuropathic pain-related amygdala activity and behaviors in rats. Neuropharmacology, 2018, 138, 219-231.	4.1	17
17	5-HT _{2C} Receptor Knockdown in the Amygdala Inhibits Neuropathic-Pain-Related Plasticity and Behaviors. Journal of Neuroscience, 2017, 37, 1378-1393.	3.6	63
18	Monomethyl fumarate inhibits pain behaviors and amygdala activity in a rat arthritis model. Pain, 2017, 158, 2376-2385.	4.2	23

GUANGCHEN

#	Article	IF	CITATIONS
19	Differential contributions of vasopressin V1A and oxytocin receptors in the amygdala to pain-related behaviors in rats. Molecular Pain, 2016, 12, 174480691667649.	2.1	22
20	Small-Conductance Calcium-Activated Potassium (SK) Channels in the Amygdala Mediate Pain-Inhibiting Effects of Clinically Available Riluzole in a Rat Model of Arthritis Pain. Molecular Pain, 2015, 11, s12990-015-0055.	2.1	29
21	Reactive oxygen species mediate visceral pain–related amygdala plasticity and behaviors. Pain, 2015, 156, 825-836.	4.2	44
22	<scp>CB</scp> 1 augments m <scp>G</scp> lu <scp>R</scp> 5 function in medial prefrontal cortical neurons to inhibit amygdala hyperactivity in an arthritis pain model. European Journal of Neuroscience, 2014, 39, 455-466.	2.6	60
23	Non-Pain-Related CRF1 Activation in the Amygdala Facilitates Synaptic Transmission and Pain Responses. Molecular Pain, 2013, 9, 1744-8069-9-2.	2.1	71
24	Modulation of medial prefrontal cortical activity using in vivo recordings and optogenetics. Molecular Brain, 2012, 5, 36.	2.6	113
25	Pain-related deactivation of medial prefrontal cortical neurons involves mGluR1 and GABA _A receptors. Journal of Neurophysiology, 2011, 106, 2642-2652.	1.8	137
26	Cognitive Impairment in Pain through Amygdala-Driven Prefrontal Cortical Deactivation. Journal of Neuroscience, 2010, 30, 5451-5464.	3.6	326
27	Reactive Oxygen Species Are Involved in Group I mGluR-Mediated Facilitation of Nociceptive Processing in Amygdala Neurons. Journal of Neurophysiology, 2010, 104, 218-229.	1.8	50
28	Hemispheric Lateralization of Pain Processing by Amygdala Neurons. Journal of Neurophysiology, 2009, 102, 2253-2264.	1.8	171
29	NR2B Receptor Blockade Inhibits Pain-Related Sensitization of Amygdala Neurons. Molecular Pain, 2009, 5, 1744-8069-5-21.	2.1	22
30	Pro- and Anti-Nociceptive Effects of Corticotropin-Releasing Factor (CRF) in Central Amygdala Neurons Are Mediated Through Different Receptors. Journal of Neurophysiology, 2008, 99, 1201-1212.	1.8	95
31	Differential Effects of CRF1 and CRF2 Receptor Antagonists on Pain-Related Sensitization of Neurons in the Central Nucleus of the Amygdala. Journal of Neurophysiology, 2007, 97, 3893-3904.	1.8	114
32	Pain-Related Anxiety-Like Behavior Requires CRF1 Receptors in the Amygdala. Molecular Pain, 2007, 3, 1744-8069-3-13.	2.1	118