List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2684735/publications.pdf Version: 2024-02-01

OLCA KARROVA

#	Article	IF	CITATIONS
1	Influenza Virus Aerosols in the Air and Their Infectiousness. Advances in Virology, 2014, 2014, 1-6.	1.1	98
2	The Movement Protein-Triggered in Situ Conversion of Potato Virus X Virion RNA from a Nontranslatable into a Translatable Form. Virology, 2000, 271, 259-263.	2.4	92
3	Translational Activation of Encapsidated Potato Virus X RNA by Coat Protein Phosphorylation. Virology, 2001, 286, 466-474.	2.4	81
4	Nontranslatability and Dissimilar Behavior in Plants and Protoplasts of Viral RNA and Movement Protein Complexes Formedin Vitro. Virology, 1997, 230, 11-21.	2.4	80
5	A Tobamovirus Genome That Contains an Internal Ribosome Entry Site Functionalin Vitro. Virology, 1997, 232, 32-43.	2.4	75
6	Potato virus X RNA-mediated assembly of single-tailed ternary â€~coat protein–RNA–movement protein' complexes. Journal of General Virology, 2006, 87, 2731-2740.	2.9	74
7	Phosphorylation of Tobacco Mosaic Virus Movement Protein Abolishes Its Translation Repressing Ability. Virology, 1999, 261, 20-24.	2.4	72
8	Thermal transition of native tobacco mosaic virus and RNA-free viral proteins into spherical nanoparticles. Journal of General Virology, 2011, 92, 453-456.	2.9	70
9	Linear Remodeling of Helical Virus by Movement Protein Binding. Journal of Molecular Biology, 2003, 333, 565-572.	4.2	63
10	AFM Study of Potato Virus X Disassembly Induced by Movement Protein. Journal of Molecular Biology, 2003, 332, 321-325.	4.2	58
11	Internal Initiation of Translation Directed by the 5′-Untranslated Region of the Tobamovirus Subgenomic RNA I2. Virology, 1999, 263, 139-154.	2.4	49
12	<i>Potato virus X</i> : structure, disassembly and reconstitution. Molecular Plant Pathology, 2007, 8, 667-675.	4.2	46
13	Immunogenic compositions assembled from tobacco mosaic virus-generated spherical particle platforms and foreign antigens. Journal of General Virology, 2012, 93, 400-407.	2.9	41
14	Mutagenic analysis of Potato Virus X movement protein (TGBp1) and the coat protein (CP): in vitro TGBp1–CP binding and viral RNA translation activation. Molecular Plant Pathology, 2007, 9, 071127144754003-???.	4.2	35
15	Comparative Study of Non-Enveloped Icosahedral Viruses Size. PLoS ONE, 2015, 10, e0142415.	2.5	33
16	Plant virus particles with various shapes as potential adjuvants. Scientific Reports, 2020, 10, 10365.	3.3	31
17	Examination of Biologically Active Nanocomplexes by Nanoparticle Tracking Analysis. Microscopy and Microanalysis, 2013, 19, 808-813.	0.4	30
18	β-structure of the coat protein subunits in spherical particles generated by tobacco mosaic virus thermal denaturation. Journal of Biomolecular Structure and Dynamics, 2014, 32, 701-708.	3.5	27

#	Article	IF	CITATIONS
19	Obtaining and characterization of spherical particles—new biogenic platforms. Moscow University Biological Sciences Bulletin, 2015, 70, 194-197.	0.7	27
20	Study of rubella candidate vaccine based on a structurally modified plant virus. Antiviral Research, 2017, 144, 27-33.	4.1	26
21	Translation arrest of potato virus X RNA in Krebs-2 cell-free system: RNase H cleavage promoted by complementary oligodeoxynucleotides. FEBS Letters, 1988, 234, 65-68.	2.8	25
22	Effects of sequence elements in the potato virus X RNA 5' non-translated Âbeta-leader on its translation enhancing activity. Journal of General Virology, 1993, 74, 2717-2724.	2.9	23
23	Tritium planigraphy study of structural alterations in the coat protein of <i>Potatoâ€fvirusâ€fX</i> induced by binding of its triple gene blockâ€f1 protein to virions. FEBS Journal, 2009, 276, 7006-7015.	4.7	23
24	Biosafety of plant viruses for human and animals. Moscow University Biological Sciences Bulletin, 2016, 71, 128-134.	0.7	23
25	Phosphorus Feast and Famine in Cyanobacteria: Is Luxury Uptake of the Nutrient Just a Consequence of Acclimation to Its Shortage?. Cells, 2020, 9, 1933.	4.1	23
26	Regulation of RNA translation in potato virus X RNA-coat protein complexes: The key role of the N-terminal segment of the protein. Molecular Biology, 2006, 40, 628-634.	1.3	21
27	Use of a polycation spacer for noncovalent immobilization of albumin on thermally modified virus particles. Polymer Science - Series A, 2011, 53, 1026-1031.	1.0	21
28	Complexes assembled from TMV-derived spherical particles and entire virions of heterogeneous nature. Journal of Biomolecular Structure and Dynamics, 2014, 32, 1193-1201.	3.5	21
29	Deletion of the Intercistronic Poly(A) Tract from Brome Mosaic Virus RNA 3 by Ribonuclease H and Its Restoration in Progeny of the Religated RNA 3. Journal of General Virology, 1989, 70, 2287-2297.	2.9	20
30	Stimulated low-frequency Raman scattering in a suspension of tobacco mosaic virus. Laser Physics Letters, 2016, 13, 085701.	1.4	19
31	Assessment of structurally modified plant virus as a novel adjuvant in toxicity studies. Regulatory Toxicology and Pharmacology, 2018, 97, 127-133.	2.7	19
32	Stress-induced changes in the ultrastructure of the photosynthetic apparatus of green microalgae. Protoplasma, 2019, 256, 261-277.	2.1	19
33	The complete nucleotide sequence of Alternanthera mosaic virus infecting Portulaca grandiflora represents a new strain distinct from phlox isolates. Virus Genes, 2011, 42, 268-271.	1.6	18
34	Characterization of Alternanthera mosaic virus and its Coat Protein. The Open Virology Journal, 2011, 5, 136-140.	1.8	17
35	A new subarctic strain of Tetradesmus obliquus—part I: identification and fatty acid profiling. Journal of Applied Phycology, 2018, 30, 2737-2750	2.8	17
36	Laser excitation of gigahertz vibrations in Cauliflower mosaic viruses' suspension. Laser Physics Letters, 2018, 15, 095603.	1.4	17

#	Article	IF	CITATIONS
37	Vaccines against anthrax based on recombinant protective antigen: problems and solutions. Expert Review of Vaccines, 2019, 18, 813-828.	4.4	17
38	Thermal conversion of filamentous potato virus X into spherical particles with different properties from virions. FEBS Letters, 2016, 590, 1543-1551.	2.8	16
39	Structure and properties of virions and virus-like particles derived from the coat protein of Alternanthera mosaic virus. PLoS ONE, 2017, 12, e0183824.	2.5	16
40	Site-specific cleavage and religation of viral RNAs I. Infectivity of barley stripe mosaic virus RNA religated from functionally active segments and restoration of the internal poly(A) tract in progeny. Virology, 1987, 159, 312-320.	2.4	15
41	Site-specific enzymatic cleavage of TMV RNA directed by deoxyribo- and chimeric (deoxyribo-ribo)oligonucleotides. FEBS Letters, 1988, 232, 96-98.	2.8	15
42	Analysis of the role of the coat protein Nâ€ŧerminal segment in <i>Potato virus X</i> virion stability and functional activity. Molecular Plant Pathology, 2012, 13, 38-45.	4.2	15
43	Data in support of toxicity studies of structurally modified plant virus to safety assessment. Data in Brief, 2018, 21, 1504-1507.	1.0	14
44	Characteristics of Artificial Virus-like Particles Assembled in vitro from Potato Virus X Coat Protein and Foreign Viral RNAs. Acta Naturae, 2011, 3, 40-46.	1.7	13
45	The role of the 5′-cap structure in viral ribonucleoproteins assembly from potato virus X coat protein and RNAs. Biochimie, 2013, 95, 2415-2422.	2.6	12
46	Surface Charge Mapping on Virions and Virus-Like Particles of Helical Plant Viruses. Acta Naturae, 2019, 11, 73-78.	1.7	12
47	Spherical particles derived from TMV virions enhance the protective properties of the rabies vaccine. Data in Brief, 2018, 21, 742-745.	1.0	11
48	Stimulated Low-Frequency Scattering of Light in an Aqueous Suspension of the Tobacco Mosaic Virus. JETP Letters, 2019, 109, 578-583.	1.4	10
49	Various Adjuvants Effect on Immunogenicity of Puumala Virus Vaccine. Frontiers in Cellular and Infection Microbiology, 2020, 10, 545371.	3.9	10
50	Two approaches for the stabilization of <i>Bacillus anthracis</i> recombinant protective antigen. Human Vaccines and Immunotherapeutics, 2021, 17, 560-565.	3.3	10
51	Proteins immobilization on the surface of modified plant viral particles coated with hydrophobic polycations. Journal of Biomaterials Science, Polymer Edition, 2014, 25, 1743-1754.	3.5	9
52	New type platforms for in vitro vaccine assembly. Moscow University Biological Sciences Bulletin, 2015, 70, 177-183.	0.7	9
53	The 5′-proximal region of Potato virus X RNA involves the potential cap-dependent "conformational element―for encapsidation. Biochimie, 2015, 115, 116-119.	2.6	9
54	Characteristics of Artificial Virus-like Particles Assembled in vitro from Potato Virus X Coat Protein and Foreign Viral RNAs. Acta Naturae, 2011, 3, 40-6.	1.7	8

#	Article	IF	CITATIONS
55	Vaccine Candidate Against COVID-19 Based on Structurally Modified Plant Virus as an Adjuvant. Frontiers in Microbiology, 2022, 13, 845316.	3.5	8
56	Surface characterization of the thermal remodeling helical plant virus. PLoS ONE, 2019, 14, e0216905.	2.5	7
57	Comparative analysis of protein kinases that phosphorylate tobacco mosaic virus movement protein in vitro. Doklady Biochemistry and Biophysics, 2002, 386, 293-295.	0.9	6
58	Restoration of potato virus X coat protein capacity for assembly with RNA after His-tag removal. Archives of Virology, 2009, 154, 337-341.	2.1	6
59	Nonspecific activation of translation of encapsidated potexviral RNA with involvement of potato virus X movement protein TGB1. Doklady Biochemistry and Biophysics, 2009, 428, 239-241.	0.9	6
60	The key role of rubella virus glycoproteins in the formation of immune response, and perspectives on their use in the development of new recombinant vaccines. Vaccine, 2016, 34, 1006-1011.	3.8	6
61	Translational Cross-Activation of the Encapsidated RNA of Potexviruses. Acta Naturae, 2017, 9, 52-57.	1.7	6
62	Effect of the N-terminal domain of the coat protein of potato virus X on the structure of viral particles. Doklady Biochemistry and Biophysics, 2003, 391, 189-191.	0.9	5
63	Rotavirus Vaccines: New Strategies and Approaches. Moscow University Biological Sciences Bulletin, 2017, 72, 169-178.	0.7	5
64	Comparative Study of Thermal Remodeling of Viruses with Icosahedral and Helical Symmetry. Moscow University Biological Sciences Bulletin, 2017, 72, 179-183.	0.7	5
65	<i>>Alternanthera mosaic potexvirus</i> : Several Features, Properties, and Application. Advances in Virology, 2018, 2018, 1-11.	1.1	5
66	Stimulated Low-Frequency Raman Scattering in Brome Mosaic Virus. Journal of Russian Laser Research, 2021, 42, 106-113.	0.6	5
67	Designing Stable Bacillus anthracis Antigens with a View to Recombinant Anthrax Vaccine Development. Pharmaceutics, 2022, 14, 806.	4.5	5
68	Structural properties of potexvirus coat proteins detected by optical methods. Biochemistry (Moscow), 2016, 81, 1522-1530.	1.5	4
69	Scanning Probe Microscopy Of Biomacromolecules: Nucleic Acids, Proteins And Their Complexes. , 2002, , 321-330.		4
70	Chimeric Virus as a Source of the Potato Leafroll Virus Antigen. Molecular Biotechnology, 2017, 59, 469-481.	2.4	3
71	Thermal remodelling of Alternanthera mosaic virus virions and virus-like particles into protein spherical particles. PLoS ONE, 2021, 16, e0255378.	2.5	3
72	DEVELOPMENT OF AVIAN INFLUENZA VACCINE ON THE BASIS OF STRUCTURALLY MODIFIED PLANT VIRUS. Sel'skokhozyaistvennaya Biologiya, 2017, 52, 731-738.	0.3	3

#	Article	IF	CITATIONS
73	The 3′-untranslated region of brome mosaic virus RNA does not enhancetranslation of capped mRNAs in vitro. FEBS Letters, 1995, 360, 281-285.	2.8	2
74	Double subgenomic promoter control for a target gene superexpression by a plant viral vector. Biochemistry (Moscow), 2015, 80, 1039-1046.	1.5	2
75	Stimulated low-frequency Raman scattering in plant virus suspensions. Journal of Physics: Conference Series, 2017, 918, 012041.	0.4	2
76	Translational Cross-Activation of the Encapsidated RNA of Potexviruses. Acta Naturae, 2017, 9, 52-57.	1.7	2
77	The Effect of Chilling on the Photosynthetic Apparatus of Microalga Lobosphaera incisa IPPAS C-2047. Biochemistry (Moscow), 2021, 86, 1590-1598.	1.5	2
78	Site-specific cleavage and religation of viral RNAs.In vitroconstruction of chimeric viral RNAs containing a foreign tRNA-like structure and examination of their properties. Archives of Phytopathology and Plant Protection, 1989, 25, 15-26.	1.3	1
79	Comparative study of structure and properties of nucleoproteides synthesized using plant virus coat protein. Colloid Journal, 2011, 73, 523-530.	1.3	1
80	New phytoviral vector for superexpression of target proteins in plants. Moscow University Biological Sciences Bulletin, 2013, 68, 169-173.	0.7	1
81	A Recombinant Rotavirus Antigen Based on the Coat Protein of Alternanthera Mosaic Virus. Molecular Biology, 2020, 54, 243-248.	1.3	1
82	Novel antigen panel for modern broad-spectrum recombinant rotavirus A vaccine. Clinical and Experimental Vaccine Research, 2021, 10, 123.	2.2	1
83	Green Synthesis of Silver Nanoparticles with the Tobacco Mosaic Virus. Reviews and Advances in Chemistry, 2021, 11, 189-196.	0.5	1
84	Charge mechanism of low-frequency stimulated Raman scattering on viruses. Physical Review A, 2022, 105, .	2.5	1
85	Structurally Modified Plant Viruses and Bacteriophages with Helical Structure. Properties and Applications. Biochemistry (Moscow), 2022, 87, 548-558.	1.5	1
86	Role of C- and N-Terminal Mutations of the Movement Protein of Tobacco Mosaic Virus in Activation of Complexes between the Transport Protein and Viral RNA That Are Not Translated In Vitro. Doklady Biochemistry and Biophysics, 2004, 397, 224-227.	0.9	0
87	Stimulated low-frequency Raman scattering in viruses. , 2016, , .		0
88	Study of the potexvirus ribonucleoproteins signal of assembly. Moscow University Biological Sciences Bulletin, 2016, 71, 45-49.	0.7	0
89	On the Origin of a Low Intensity Microwave Irradiation Effect on Tobacco Mosaic Virus Activity. , 2019, , .		0
90	Prospects for improvement of value-added tax in the process of digitalization of the Russian economy. , 0, , .		0