
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2684571/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	NIR-II emissive properties of 808Ânm-excited lanthanide-doped nanoparticles for multiplexed in vivo imaging. Journal of Luminescence, 2022, 242, 118597.	3.1	11
2	High Spatial and Temporal Resolution NIR-IIb Gastrointestinal Imaging in Mice. Nano Letters, 2022, 22, 2793-2800.	9.1	18
3	Power-Dependent Optimal Concentrations of Tm ³⁺ and Yb ³⁺ in Upconversion Nanoparticles. Journal of Physical Chemistry Letters, 2022, 13, 5316-5323.	4.6	16
4	Networking State of Ytterbium Ions Probing the Origin of Luminescence Quenching and Activation in Nanocrystals. Advanced Science, 2021, 8, 2003325.	11.2	31
5	Topology-controlled Polarized Photoluminescence from Rare-earth Doped Nanocrystals. , 2021, , .		0
6	Quantitatively Monitoring <i>In Situ</i> Mitochondrial Thermal Dynamics by Upconversion Nanoparticles. Nano Letters, 2021, 21, 1651-1658.	9.1	60
7	Stable and Highly Efficient Antibody–Nanoparticles Conjugation. Bioconjugate Chemistry, 2021, 32, 1146-1155.	3.6	13
8	Up-conversion hybrid nanomaterials for light- and heat-driven applications. Progress in Materials Science, 2021, 121, 100838.	32.8	34
9	Preselectable Optical Fingerprints of Heterogeneous Upconversion Nanoparticles. Nano Letters, 2021, 21, 7659-7668.	9.1	27
10	Defect engineering in lanthanide doped luminescent materials. Coordination Chemistry Reviews, 2021, 448, 214178.	18.8	26
11	Optical Fingerprint Classification of Single Upconversion Nanoparticles by Deep Learning. Journal of Physical Chemistry Letters, 2021, 12, 10242-10248.	4.6	10
12	Stratified Disk Microrobots with Dynamic Maneuverability and Proton-Activatable Luminescence for <i>i>in Vivo</i> Imaging. ACS Nano, 2021, 15, 19924-19937.	14.6	12
13	Multiplexed structured illumination super-resolution imaging with lifetime-engineered upconversion nanoparticles. Nanoscale Advances, 2021, 4, 30-38.	4.6	9
14	Enhancing Hybrid Upconversion Nanosystems via Synergistic Effects of Moiety Engineered NIR Dyes. Nano Letters, 2021, 21, 9862-9868.	9.1	26
15	Optical Nanomaterials and Enabling Technologies for Highâ€Securityâ€Level Anticounterfeiting. Advanced Materials, 2020, 32, e1901430.	21.0	305
16	Advances and challenges for fluorescence nanothermometry. Nature Methods, 2020, 17, 967-980.	19.0	333
17	Nanorods with multidimensional optical information beyond the diffraction limit. Nature Communications, 2020, 11, 6047.	12.8	35
18	Low threshold lasing emissions from a single upconversion nanocrystal. Nature Communications, 2020, 11, 6156.	12.8	49

#	Article	IF	CITATIONS
19	Anticounterfeiting Systems: Optical Nanomaterials and Enabling Technologies for High‧ecurity‣evel Anticounterfeiting (Adv. Mater. 18/2020). Advanced Materials, 2020, 32, 2070141.	21.0	6
20	Single-particle spectroscopy for functional nanomaterials. Nature, 2020, 579, 41-50.	27.8	167
21	Helix Shape Power-Dependent Properties of Single Upconversion Nanoparticles. Journal of Physical Chemistry Letters, 2020, 11, 2883-2890.	4.6	27
22	Lanthanide-activated nanoconstructs for optical multiplexing. Coordination Chemistry Reviews, 2020, 415, 213328.	18.8	45
23	Atomic deciphering of cation exchange mechanism in upconversion nanoparticles. Journal of Luminescence, 2020, 224, 117289.	3.1	3
24	Topological nanophotonics for photoluminescence control. Nanophotonics, 2020, 10, 435-441.	6.0	16
25	Ultrasensitive Ratiometric Nanothermometer with Large Dynamic Range and Photostability. Chemistry of Materials, 2019, 31, 9480-9487.	6.7	103
26	Future and challenges for hybrid upconversion nanosystems. Nature Photonics, 2019, 13, 828-838.	31.4	145
27	Emerging role of machine learning in light-matter interaction. Light: Science and Applications, 2019, 8, 84.	16.6	56
28	Thermally enhanced NIR–NIR anti-Stokes emission in rare earth doped nanocrystals. Nanoscale, 2019, 11, 12547-12552.	5.6	53
29	Boosting NIR-driven photocatalytic water splitting by constructing 2D/3D epitaxial heterostructures. Journal of Materials Chemistry A, 2019, 7, 13629-13634.	10.3	30
30	High-sensitivity imaging of time-domain near-infrared light transducer. Nature Photonics, 2019, 13, 525-531.	31.4	166
31	Transparent glass-ceramics functionalized by dispersed crystals. Progress in Materials Science, 2018, 97, 38-96.	32.8	236
32	Bispecific Antibody-Functionalized Upconversion Nanoprobe. Analytical Chemistry, 2018, 90, 3024-3029.	6.5	18
33	Activation of the surface dark-layer to enhance upconversion in a thermal field. Nature Photonics, 2018, 12, 154-158.	31.4	270
34	Quantitative Lateral Flow Strip Sensor Using Highly Doped Upconversion Nanoparticles. Analytical Chemistry, 2018, 90, 12356-12360.	6.5	98
35	Triplet state brightens upconversion. Nature Photonics, 2018, 12, 378-379.	31.4	12
36	Direct cation exchange of surface ligand capped upconversion nanocrystals to produce strong luminescence. Chemical Communications, 2018, 54, 9587-9590.	4.1	13

#	Article	IF	CITATIONS
37	Impact of Lanthanide Nanomaterials on Photonic Devices and Smart Applications. Small, 2018, 14, e1801882.	10.0	128
38	Advances in highly doped upconversion nanoparticles. Nature Communications, 2018, 9, 2415.	12.8	793
39	Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy. Nature, 2017, 543, 229-233.	27.8	643
40	A volumetric full-color display realized by frequency upconversion of a transparent composite incorporating dispersed nonlinear optical crystals. NPG Asia Materials, 2017, 9, e394-e394.	7.9	36
41	Integrated Strategy for High Luminescence Intensity of Upconversion Nanocrystals. ACS Photonics, 2017, 4, 1930-1936.	6.6	22
42	Enhanced Multiphoton Upconversion in Single Nanowires by Waveguiding Excitation. Advanced Optical Materials, 2016, 4, 1174-1178.	7.3	16
43	Dual-functional β-NaYF_4: Yb^3+, Er^3+ nanoparticles for bioimaging and temperature sensing. Optical Materials Express, 2016, 6, 1056.	3.0	26
44	Emission stability and reversibility of upconversion nanocrystals. Journal of Materials Chemistry C, 2016, 4, 9227-9234.	5.5	27
45	Upconversion Luminescence Behavior of Single Nanoparticles. , 2016, , 311-331.		1
46	Mid-Infrared 2.86-\$mu ext{m}\$ Emission Characteristics in Highly Dy ³⁺ Doped Fluoroaluminate Glass. IEEE Photonics Technology Letters, 2016, 28, 429-432.	2.5	4
47	Broadband mid-infrared 2.8μm emission in Ho3+/Yb3+-codoped germanate glasses. Journal of Luminescence, 2016, 171, 143-148.	3.1	48
48	Upconversion luminescence behavior of single nanoparticles. Nanoscale, 2015, 7, 15026-15036.	5.6	45
49	Polarization modulated upconversion luminescence: single particle vs. few-particle aggregates. Nanoscale, 2015, 7, 6462-6466.	5.6	65
50	Highly efficient mid-infrared 2 μm emission in Ho^3+/Yb^3+-codoped germanate glass. Optical Materials Express, 2015, 5, 1431.	3.0	41
51	Intense multiphoton upconversion of Yb ³⁺ –Tm ³⁺ doped β-NaYF ₄ individual nanocrystals by saturation excitation. Journal of Materials Chemistry C, 2015, 3, 364-369.	5.5	55
52	Space-selective crystallization of glass induced by femtosecond laser irradiation. Journal of Non-Crystalline Solids, 2014, 383, 91-96.	3.1	24
53	Recent advances in bismuth activated photonic materials. Progress in Materials Science, 2014, 64, 1-72.	32.8	255
54	Lanthanide-doped NaGdF ₄ core–shell nanoparticles for non-contact self-referencing temperature sensors. Nanoscale, 2014, 6, 5675-5679.	5.6	231

#	Article	IF	CITATIONS
55	Analysis on energy transfer process of Ho 3+ doped fluoroaluminate glass sensitized by Yb 3+ for mid-infrared 2.85 1¼m emission. Journal of Quantitative Spectroscopy and Radiative Transfer, 2014, 149, 41-50.	2.3	45
56	Persistent luminescence of SrAl2O4: Eu2+, Dy3+, Cr3+ phosphors in the tissue transparency window. Materials Chemistry and Physics, 2014, 147, 772-776.	4.0	31
57	Elemental redistribution behavior in tellurite glass induced by high repetition rate femtosecond laser irradiation. Journal of Alloys and Compounds, 2014, 601, 212-216.	5.5	7
58	Near-mid infrared emission in Ce3+ and Tm3+ co-doped oxyfluoride glasses by excited at different wavelengths light. Journal of Non-Crystalline Solids, 2014, 391, 49-53.	3.1	7
59	Up-conversion luminescence in LaF3:Ho3+via two-wavelength excitation for use in solar cells. Journal of Materials Chemistry C, 2013, 1, 8023.	5.5	66
60	Raman spectroscopic investigation on femtosecond laser induced residual stress and element distribution in bismuth germanate glasses. Journal of Raman Spectroscopy, 2013, 44, 307-311.	2.5	9
61	Ultrasensitive Polarized Up-Conversion of Tm ³⁺ –Yb ³⁺ Doped β-NaYF ₄ Single Nanorod. Nano Letters, 2013, 13, 2241-2246.	9.1	147
62	Broadband downshifting luminescence in Cr^3+-Yb^3+ codoped garnet for efficient photovoltaic generation. Optics Express, 2013, 21, 4167.	3.4	34
63	Recent Research Progress on Femtosecond Laser Induced Microstructures in Glasses. International Journal of Optomechatronics, 2012, 6, 179-187.	6.6	Ο
64	Ultrafast modification of elements distribution and local luminescence properties in glass. Journal of Non-Crystalline Solids, 2012, 358, 1185-1189.	3.1	9
65	Quantum Cutting in Luminescent Glasses and Glass Ceramics. International Journal of Applied Glass Science, 2012, 3, 299-308.	2.0	21
66	A discussion on spectral modification from visible to near-infrared based on energy transfer for silicon solar cells. Optical Materials, 2012, 34, 901-905.	3.6	29
67	Broadband spectral conversion of visible light to near-infrared emission via energy transfer from Ce ³⁺ to Nd ³⁺ /Yb ³⁺ in YAG. Journal of Materials Research, 2011, 26, 689-692.	2.6	16
68	Persistent Near Infrared Phosphorescence from Rare Earth Ions Co-doped Strontium Aluminate Phosphors. Journal of the Electrochemical Society, 2011, 158, K17.	2.9	19
69	Broadband Near-Infrared Luminescence from γ-ray Irradiated Bismuth-Doped Y4GeO8 Crystals. Journal of the Electrochemical Society, 2011, 158, G203.	2.9	21
70	Unusual luminescence quenching and reviving behavior of Bi-doped germanate glasses. Optics Express, 2011, 19, 23436.	3.4	32
71	Ultraviolet to near-infrared spectral modification in Ce3+ and Yb3+ codoped phosphate glasses. Journal of Non-Crystalline Solids, 2011, 357, 2336-2339.	3.1	10
72	Controllable space selective precipitation of copper nanoparticles in borosilicate glasses using ultrafast laser irradiation. Journal of Non-Crystalline Solids, 2011, 357, 2380-2383.	3.1	23

#	Article	IF	CITATIONS
73	Optical Property and Energy Transfer in the ZnO-LiYbO2Hybrid Phosphors under the Indirect Near-UV Excitation. Journal of the Electrochemical Society, 2011, 159, H11-H15.	2.9	5
74	Broadband down-conversion spectral modification based on energy transfer. Optical Materials, 2010, 33, 153-158.	3.6	34
75	Light and heat driven precipitation of copper nanoparticles inside Cu2+-doped borate glasses. Chemical Physics Letters, 2010, 485, 91-94.	2.6	40
76	Enhanced downconversion luminescence by co-doping Ce3+ in Tb3+–Yb3+ doped borate glasses. Chemical Physics Letters, 2010, 486, 116-118.	2.6	44
77	Broad-Band Excited Quantum Cutting in Eu[sup 2+]–Yb[sup 3+] Co-doped Aluminosilicate Glasses. Journal of the Electrochemical Society, 2010, 157, B1146.	2.9	26
78	Broadband Near-Infrared Quantum Cutting in Eu[sup 2+] and Yb[sup 3+] Ions Co-doped CaAl[sub 2]O[sub 4] Phosphor. Journal of the Electrochemical Society, 2010, 157, A1073.	2.9	33
79	Efficient broadband near-infrared quantum cutting for solar cells. Optics Express, 2010, 18, 9671.	3.4	115
80	Intense infrared emission of Er^3+ in Ca_8Mg(SiO_4)_4Cl_2 phosphor from energy transfer of Eu^2+ by broadband down-conversion. Optics Express, 2010, 18, 21663.	3.4	45
81	Shape- and size-controllable microstructure on glass surface induced by femtosecond laser irradiation. Optics Letters, 2010, 35, 2299.	3.3	8
82	Broadband spectral modification from visible light to near-infrared radiation using Ce3+–Er3+ codoped yttrium aluminium garnet. Physical Chemistry Chemical Physics, 2010, 12, 13759.	2.8	45
83	Broadband downconversion based infrared quantum cutting by cooperative energy transfer from Eu2+ to Yb3+ in glasses. Applied Physics Letters, 2009, 95, .	3.3	103
84	Broadband downconversion from oxygen-deficient centers to Yb^3+ in germanate glasses. Journal of the Optical Society of America B: Optical Physics, 2009, 26, 2185.	2.1	10