
Ji-Shi Wei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2684303/publications.pdf

Version: 2024-02-01

∣і₋Ѕні \//ғі

#	Article	IF	CITATIONS
1	Full-Color Light-Emitting Carbon Dots with a Surface-State-Controlled Luminescence Mechanism. ACS Nano, 2016, 10, 484-491.	7.3	1,872
2	Nitrogen and sulfur co-doped carbon dots with strong blue luminescence. Nanoscale, 2014, 6, 13817-13823.	2.8	497
3	Solventâ€Controlled Synthesis of Highly Luminescent Carbon Dots with a Wide Color Gamut and Narrowed Emission Peak Widths. Small, 2018, 14, e1800612.	5.2	449
4	Red-Emissive Carbon Dots for Fingerprints Detection by Spray Method: Coffee Ring Effect and Unquenched Fluorescence in Drying Process. ACS Applied Materials & Interfaces, 2017, 9, 18429-18433.	4.0	268
5	Synergetic Protective Effect of the Ultralight MWCNTs/NCQDs Modified Separator for Highly Stable Lithium–Sulfur Batteries. Advanced Energy Materials, 2018, 8, 1702288.	10.2	249
6	Highly Efficient Red-Emitting Carbon Dots with Gram-Scale Yield for Bioimaging. Langmuir, 2017, 33, 12635-12642.	1.6	222
7	Functional Groups and Pore Size Distribution Do Matter to Hierarchically Porous Carbons as High-Rate-Performance Supercapacitors. Chemistry of Materials, 2016, 28, 445-458.	3.2	221
8	Facile synthesis of red-emitting carbon dots from pulp-free lemon juice for bioimaging. Journal of Materials Chemistry B, 2017, 5, 5272-5277.	2.9	209
9	Robust Negative Electrode Materials Derived from Carbon Dots and Porous Hydrogels for Highâ€Performance Hybrid Supercapacitors. Advanced Materials, 2019, 31, e1806197.	11.1	194
10	Carbon Dots/NiCo ₂ O ₄ Nanocomposites with Various Morphologies for High Performance Supercapacitors. Small, 2016, 12, 5927-5934.	5.2	190
11	Surface states of carbon dots and their influences on luminescence. Journal of Applied Physics, 2020, 127, .	1.1	180
12	Carbon dots with red/near-infrared emissions and their intrinsic merits for biomedical applications. Carbon, 2020, 167, 322-344.	5.4	164
13	Hierarchical Porous Carbon Materials with High Capacitance Derived from Schiff-Base Networks. ACS Applied Materials & Interfaces, 2015, 7, 5811-5819.	4.0	108
14	Efficient Oxygen Electrocatalyst for Zn–Air Batteries: Carbon Dots and Co ₉ S ₈ Nanoparticles in a N,S-Codoped Carbon Matrix. ACS Applied Materials & Interfaces, 2019, 11, 14085-14094.	4.0	96
15	A versatile single-ion electrolyte with a Grotthuss-like Li conduction mechanism for dendrite-free Li metal batteries. Energy and Environmental Science, 2019, 12, 2741-2750.	15.6	89
16	A new generation of energy storage electrode materials constructed from carbon dots. Materials Chemistry Frontiers, 2020, 4, 729-749.	3.2	70
17	Large scale synthesis of full-color emissive carbon dots from a single carbon source by a solvent-free method. Nano Research, 2022, 15, 3548-3555.	5.8	68
18	Heteroatom-doped carbon dots based catalysts for oxygen reduction reactions. Journal of Colloid and Interface Science, 2019, 537, 716-724.	5.0	63

JI-SHI WEI

#	Article	IF	CITATIONS
19	Robust hierarchically interconnected porous carbons derived from discarded Rhus typhina fruits for ultrahigh capacitive performance supercapacitors. Journal of Power Sources, 2019, 414, 13-23.	4.0	58
20	Surface Roughness: A Crucial Factor To Robust Electric Double Layer Capacitors. ACS Applied Materials & Interfaces, 2020, 12, 5786-5792.	4.0	40
21	Self-Assembled ZnO Nanoparticle Capsules for Carrying and Delivering Isotretinoin to Cancer Cells. ACS Applied Materials & Interfaces, 2017, 9, 18474-18481.	4.0	38
22	Li–air Battery with a Superhydrophobic Li-Protective Layer. ACS Applied Materials & Interfaces, 2020, 12, 23010-23016.	4.0	33
23	Preparation of porous carbon electrodes from semen cassiae for high-performance electric double-layer capacitors. New Journal of Chemistry, 2018, 42, 6763-6769.	1.4	29
24	Self-assembled ZnO-carbon dots anode materials for high performance nickel-zinc alkaline batteries. Chemical Engineering Journal, 2021, 425, 130660.	6.6	29
25	High volumetric supercapacitor with a long life span based on polymer dots and graphene sheets. Journal of Power Sources, 2017, 364, 465-472.	4.0	27
26	Integrating Carbon Dots with Porous Hydrogels to Produce Full Carbon Electrodes for Electric Double-Layer Capacitors. ACS Applied Energy Materials, 2020, 3, 6907-6914.	2.5	27
27	Red Fluorescent Carbon Dot Powder for Accurate Latent Fingerprint Identification using an Artificial Intelligence Program. ACS Applied Materials & Interfaces, 2020, 12, 29549-29555.	4.0	25
28	Applications of Carbon Dots in Nextâ€generation Lithiumâ€lon Batteries. ChemNanoMat, 2020, 6, 1421-1436.	1.5	21
29	In‣itu Growth of Mn ₃ O ₄ Nanoparticles on Nitrogenâ€Doped Carbon Dotsâ€Derived Carbon Skeleton as Cathode Materials for Aqueous Zinc Ion Batteries. ChemSusChem, 2022, 15, .	3.6	20
30	A dendrite-free Li plating host towards high utilization of Li metal anode in Li–O2 battery. Science Bulletin, 2019, 64, 478-484.	4.3	19
31	Spontaneous Atomic Sites Formation in Wurtzite CoO Nanorods for Robust CO ₂ Photoreduction. Advanced Functional Materials, 2022, 32, .	7.8	16
32	Carbon dots crosslinked gel polymer electrolytes for dendriteâ€free and long ycle lithium metal batteries. SmartMat, 2022, 3, 323-336.	6.4	12
33	In-situ self-assembly host-guest carbon aerogels for robust electrochemical capacitors. Electrochimica Acta, 2020, 364, 137285.	2.6	8
34	Fine-Tuning the Wall Thickness of Ordered Mesoporous Graphene by Exploiting Ligand Exchange of Colloidal Nanocrystals. Frontiers in Chemistry, 2017, 5, 117.	1.8	5
35	Integrated Carbon Dots-Matrix Structures: An Efficient Strategy for High-Performance Electric Double Layer Capacitors. ACS Applied Energy Materials, 2020, 3, 4958-4964.	2.5	5
36	Carbon aerogels with mutual support structures constructed by hybrid hydrogels: Robust energy storage materials. Materials Today Communications, 2020, 25, 101444.	0.9	2

#	Article	IF	CITATIONS
37	Preparation of ZnO Nanorods with Lattice Vacancies and Their Application in Ni-Zn Battery. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2019, , 61.	0.6	Ο