
Jack J Katzfey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2684228/publications.pdf

Version: 2024-02-01

IACK | KATZEEV

#	Article	IF	CITATIONS
1	Projections of rapidly rising surface temperatures over Africa under low mitigation. Environmental Research Letters, 2015, 10, 085004.	5.2	300
2	Future Global Meteorological Drought Hot Spots: A Study Based on CORDEX Data. Journal of Climate, 2020, 33, 3635-3661.	3.2	230
3	Land use and land cover change impacts on the regional climate of non-Amazonian South America: A review. Global and Planetary Change, 2015, 128, 103-119.	3.5	186
4	Project to Intercompare Regional Climate Simulations (PIRCS): Description and initial results. Journal of Geophysical Research, 1999, 104, 19443-19461.	3.3	169
5	The Life Cycle of a Cyclone Wave in the Southern Hemisphere. Part I: Eddy Energy Budget. Journals of the Atmospheric Sciences, 1991, 48, 1972-1998.	1.7	144
6	A Scheme for Calculation of the Liquid Fraction in Mixed-Phase Stratiform Clouds in Large-Scale Models. Monthly Weather Review, 2000, 128, 1070-1088.	1.4	136
7	Global dynamical projections of surface ocean wave climate for a future high greenhouse gas emission scenario. Ocean Modelling, 2013, 70, 221-245.	2.4	114
8	Performance of an empirical biasâ€correction of a highâ€resolution climate dataset. International Journal of Climatology, 2014, 34, 2189-2204.	3.5	63
9	Precipitation in marine cumulus and stratocumulus Atmospheric Research, 2000, 54, 117-155.	4.1	46
10	On regional dynamical downscaling for the assessment and projection of temperature and precipitation extremes across Tasmania, Australia. Climate Dynamics, 2013, 41, 3145-3165.	3.8	45
11	Evaluating reanalysis-driven CORDEX regional climate models over Australia: model performance and errors. Climate Dynamics, 2019, 53, 2985-3005.	3.8	44
12	Hydrological Processes in Regional Climate Model Simulations of the Central United States Flood of June–July 1993. Journal of Hydrometeorology, 2003, 4, 584-598.	1.9	43
13	Seasonal and regional signature of the projected southern Australian rainfall reduction. , 2015, 65, 54-71.		43
14	Simulation of Extreme New Zealand Precipitation Events. Part I: Sensitivity to Orography and Resolution. Monthly Weather Review, 1995, 123, 737-754.	1.4	41
15	Relevance of sub-grid-scale land-use effects for mesoscale models. Tellus, Series A: Dynamic Meteorology and Oceanography, 2003, 55, 232-246.	1.7	40
16	Simulations of a Cold Front by Cloud-Resolving, Limited-Area, and Large-Scale Models, and a Model Evaluation Using In Situ and Satellite Observations. Monthly Weather Review, 2000, 128, 3218-3235.	1.4	38
17	Ensemble evaluation and projection of climate extremes in China using RMIP models. International Journal of Climatology, 2018, 38, 2039-2055.	3.5	36
18	Assessing model performance of daily solar irradiance forecasts over Australia. Solar Energy, 2018, 176, 615-626.	6.1	36

JACK J KATZFEY

#	Article	IF	CITATIONS
19	A Regional Model Intercomparison Using a Case of Explosive Oceanic Cyclogenesis. Weather and Forecasting, 1996, 11, 521-543.	1.4	35
20	The Impact of Climate Change on the Poleward Movement of Tropical Cyclone–Like Vortices in a Regional Climate Model. Journal of Climate, 2000, 13, 1116-1132.	3.2	35
21	Performance of downscaled regional climate simulations using a variableâ€resolution regional climate model: Tasmania as a test case. Journal of Geophysical Research D: Atmospheres, 2013, 118, 11,936.	3.3	35
22	Projection of Indian summer monsoon climate in 2041–2060 by multiregional and global climate models. Journal of Geophysical Research D: Atmospheres, 2015, 120, 1776-1793.	3.3	35
23	High-resolution climate projections for the islands of Lombok and Sumbawa, Nusa Tenggara Barat Province, Indonesia: Challenges and implications. Climate Risk Management, 2016, 12, 32-44.	3.2	34
24	Historical and future seasonal rainfall variability in Nusa Tenggara Barat Province, Indonesia: Implications for the agriculture and water sectors. Climate Risk Management, 2016, 12, 45-58.	3.2	33
25	Bias and variance correction of sea surface temperatures used for dynamical downscaling. Journal of Geophysical Research D: Atmospheres, 2016, 121, 12,877.	3.3	31
26	Regional model simulations of New Zealand climate. Journal of Geophysical Research, 1998, 103, 5973-5982.	3.3	30
27	Simulating midsummer climate over southern Africa using a nested regional climate model. Journal of Geophysical Research, 1999, 104, 19015-19025.	3.3	30
28	High-resolution projections of surface water availability for Tasmania, Australia. Hydrology and Earth System Sciences, 2012, 16, 1287-1303.	4.9	30
29	Relevance of sub-grid-scale land-use effects for mesoscale models. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 55, 232.	1.7	29
30	Global 60Âkm simulations with CCAM: evaluation over the tropics. Climate Dynamics, 2012, 39, 637-654.	3.8	29
31	High-resolution simulations for Vietnam - methodology and evaluation of current climate. Asia-Pacific Journal of Atmospheric Sciences, 2016, 52, 91-106.	2.3	29
32	Deforestation changes land–atmosphere interactions across South American biomes. Global and Planetary Change, 2016, 139, 97-108.	3.5	28
33	GCM Simulations of Eastern Australian Cutoff Lows. Journal of Climate, 1996, 9, 2337-2355.	3.2	27
34	Global exposure of population and landâ€use to meteorological droughts under different warming levels and <scp>SSPs</scp> : A <scp>CORDEX</scp> â€based study. International Journal of Climatology, 2021, 41, 6825-6853.	3.5	26
35	Developing scenarios of climate change for Southeastern Australia: an example using regional climate model output. Climate Research, 2001, 16, 181-201.	1.1	26
36	An Atmospheric Sciences Workflow and its implementation with Web Services. Future Generation Computer Systems, 2005, 21, 69-78.	7.5	25

JACK J KATZFEY

#	ŧ	Article	IF	CITATIONS
3	37	Building Asian climate change scenario by multi-regional climate models ensemble. Part I: surface air temperature. International Journal of Climatology, 2016, 36, 4241-4252.	3.5	25
3	8	Regional changes of climate extremes over Australia–Âa comparison of regional dynamical downscaling and global climate model simulations. International Journal of Climatology, 2014, 34, 3456-3478.	3.5	24
3	9	Simulation of Extreme New Zealand Precipitation Events. Part II: Mechanisms of Precipitation Development. Monthly Weather Review, 1995, 123, 755-775.	1.4	22
4	10	Downscaling over Vietnam using the stretched-grid CCAM: verification of the mean and interannual variability of rainfall. Climate Dynamics, 2014, 43, 861-879.	3.8	21
4	1	Modification of the Thermodynamic Structure of the Lower Troposphere by the Evaporation of Precipitation: A GEWEX Cloud System Study. Monthly Weather Review, 1997, 125, 1431-1446.	1.4	21
4	2	The second compare exercise: A model intercomparison using a case of a typical mesoscale orographic flow, the pyrex iop3. Quarterly Journal of the Royal Meteorological Society, 2000, 126, 991-1029.	2.7	20
4	13	A Mesoscale Model Intercomparison: A Case of Explosive Development of a Tropical Cyclone(COMPARE) Tj ETQq1	1.0.7843 1.8	14 rgBT /0v
4	4	How an urban parameterization affects a highâ€resolution global climate simulation. Quarterly Journal of the Royal Meteorological Society, 2020, 146, 3808-3829.	2.7	19
4	15	Smart tetroons for Lagrangian air-mass tracking during ACE 1. Journal of Geophysical Research, 1999, 104, 11709-11722.	3.3	18
4	6	Limited-Area Model Sensitivity to the Complexity of Representation of the Land Surface Energy Balance. Journal of Climate, 2001, 14, 3965-3986.	3.2	18
4	17	Projected changes in rainfall and temperature over the Philippines from multiple dynamical downscaling models. International Journal of Climatology, 2020, 40, 1784-1804.	3.5	18
4	8	Sensitivity of Model Simulations for a Coastal Cyclone. Monthly Weather Review, 1987, 115, 2792-2821.	1.4	17
4	19	Simulation of an Extratropical Cyclone in the Southern Hemisphere: Model Sensitivity. Journals of the Atmospheric Sciences, 1991, 48, 2293-2312.	1.7	17
5	50	Precipitation projections in the tropical Pacific are sensitive to different types of SST bias adjustment. Geophysical Research Letters, 2015, 42, 10,856.	4.0	17
5	51	Midlatitude Frontal Clouds: GCM-Scale Modeling Implications. Journal of Climate, 2000, 13, 2729-2745.	3.2	16
5	52	A regional response in mean westerly circulation and rainfall to projected climate warming over Tasmania, Australia. Climate Dynamics, 2013, 40, 2035-2048.	3.8	16
5	53	Regional climate model projections of the South Pacific Convergence Zone. Climate Dynamics, 2016, 47, 817-829.	3.8	16
5	54	Providing future climate projections using multiple models and methods: insights from the Philippines. Climatic Change, 2018, 148, 187-203.	3.6	16

JACK J KATZFEY

#	Article	IF	CITATIONS
55	How Feasible Is the Scaling-Out of Livelihood and Food System Adaptation in Asia-Pacific Islands?. Frontiers in Sustainable Food Systems, 2020, 4, .	3.9	16
56	Regionalâ€scale rainfall projections: Simulations for the New Guinea region using the CCAM model. Journal of Geophysical Research D: Atmospheres, 2013, 118, 1271-1280.	3.3	12
57	Building Asian climate change scenario by multi-regional climate models ensemble. Part II: mean precipitation. International Journal of Climatology, 2016, 36, 4253-4264.	3.5	11
58	Climate projections for southern Australian cool-season rainfall: insights from a downscaling comparison. Climate Research, 2015, 62, 251-265.	1.1	11
59	Modelling of the OASIS Energy Flux Measurements Using Two Canopy Concepts. Boundary-Layer Meteorology, 2003, 107, 49-79.	2.3	10
60	An assessment of CSIRO Conformal Cubic Atmospheric Model simulations over Sri Lanka. Climate Dynamics, 2016, 46, 1861-1875.	3.8	10
61	The second COMPARE exercise: A model intercomparison using a case of a typical mesoscale orographic flow, the PYREX IOP3. Quarterly Journal of the Royal Meteorological Society, 2000, 126, 991-1029.	2.7	9
62	Impacts of Land Surface Model Complexity on a Regional Simulation of a Tropical Synoptic Event. Journal of Hydrometeorology, 2004, 5, 180-198.	1.9	8
63	Potential impacts of solar arrays on regional climate and on array efficiency. International Journal of Climatology, 2017, 37, 4053-4064.	3.5	8
64	The Data Integration for Model Evaluation Web Site: A One-Stop Shop for Model Evaluation. Bulletin of the American Meteorological Society, 2004, 85, 830-835.	3.3	4
65	Simulating the climate of South Pacific islands using a high resolution model. International Journal of Climatology, 2015, 35, 1157-1171.	3.5	4
66	Improved regional climate modelling through dynamical downscaling. IOP Conference Series: Earth and Environmental Science, 2010, 11, 012026.	0.3	2