Jeffrey R Peterson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2684145/publications.pdf

Version: 2024-02-01

49 papers

3,697 citations

201658 27 h-index 206102 48 g-index

54 all docs

54 docs citations

times ranked

54

6540 citing authors

#	Article	IF	CITATIONS
1	IMPDH1 retinal variants control filament architecture to tune allosteric regulation. Nature Structural and Molecular Biology, 2022, 29, 47-58.	8.2	29
2	The AMPK-related kinase NUAK2 suppresses glutathione peroxidase 4 expression and promotes ferroptotic cell death in breast cancer cells. Cell Death Discovery, 2022, 8, 253.	4.7	5
3	Ferroptotic cell death triggered by conjugated linolenic acids is mediated by ACSL1. Nature Communications, 2021, 12, 2244.	12.8	104
4	Freedom of assembly: metabolic enzymes come together. Molecular Biology of the Cell, 2020, 31, 1201-1205.	2.1	29
5	CTP synthase polymerization in germline cells of the developing <i>Drosophila</i> egg supports egg production. Biology Open, 2020, 9, .	1.2	10
6	Unexpected Activities in Regulating Ciliation Contribute to Off-target Effects of Targeted Drugs. Clinical Cancer Research, 2019, 25, 4179-4193.	7.0	18
7	Metabolite Profiling Reveals the Glutathione Biosynthetic Pathway as a Therapeutic Target in Triple-Negative Breast Cancer. Molecular Cancer Therapeutics, 2018, 17, 264-275.	4.1	43
8	T cell activation triggers reversible inosine-5′-monophosphate dehydrogenase assembly. Journal of Cell Science, 2018, 131, .	2.0	37
9	Human Inosine Monophosphate Dehydrogenase 2: Cryo-EM of Highly Flexible Filaments to Near Atomic Resolution. Biophysical Journal, 2018, 114, 62a.	0.5	O
10	Reconstituted IMPDH polymers accommodate both catalytically active and inactive conformations. Molecular Biology of the Cell, 2017, 28, 2600-2608.	2.1	61
11	Use of Inosine Monophosphate Dehydrogenase Activity Assay to Determine the Specificity of PARP-1 Inhibitors. Methods in Molecular Biology, 2017, 1608, 337-342.	0.9	1
12	Resistance to BET Bromodomain Inhibitors Is Mediated by Kinome Reprogramming in Ovarian Cancer. Cell Reports, 2016, 16, 1273-1286.	6.4	165
13	Kinase Inhibitor Profiling Reveals Unexpected Opportunities to Inhibit Disease-Associated Mutant Kinases. Cell Reports, 2016, 14, 772-781.	6.4	40
14	A High-Throughput Radiometric Kinase Assay. Methods in Molecular Biology, 2016, 1360, 87-95.	0.9	7
15	Pharmacological Profiling of Kinase Dependency in Cell Lines across Triple-Negative Breast Cancer Subtypes. Molecular Cancer Therapeutics, 2015, 14, 298-306.	4.1	14
16	Identifying three-dimensional structures of autophosphorylation complexes in crystals of protein kinases. Science Signaling, 2015, 8, rs13.	3.6	38
17	Conformational Analysis of the DFG-Out Kinase Motif and Biochemical Profiling of Structurally Validated Type II Inhibitors. Journal of Medicinal Chemistry, 2015, 58, 466-479.	6.4	154
18	Re-purposing clinical kinase inhibitors to enhance chemosensitivity by overriding checkpoints. Cell Cycle, 2014, 13, 2172-2191.	2.6	14

#	Article	lF	CITATIONS
19	Identification of a Major Determinant for Serine-Threonine Kinase Phosphoacceptor Specificity. Molecular Cell, 2014, 53, 140-147.	9.7	91
20	Ack kinase regulates <scp>CTP</scp> synthase filaments during <i>Drosophila</i> oogenesis. EMBO Reports, 2014, 15, 1184-1191.	4.5	67
21	The Human Kinome and Kinase Inhibition. Current Protocols in Pharmacology, 2013, 60, Unit2.9.	4.0	63
22	A Highly Selective Dual Insulin Receptor (IR)/Insulin-like Growth Factor 1 Receptor (IGF-1R) Inhibitor Derived from an Extracellular Signal-regulated Kinase (ERK) Inhibitor. Journal of Biological Chemistry, 2013, 288, 28068-28077.	3.4	12
23	A High-Content Screening Assay for Small-Molecule Modulators of Oncogene-Induced Senescence. Journal of Biomolecular Screening, 2013, 18, 1054-1061.	2.6	11
24	Synergistic Activation of p21-activated Kinase 1 by Phosphatidylinositol 4,5-Bisphosphate and Rho GTPases. Journal of Biological Chemistry, 2013, 288, 8887-8897.	3.4	12
25	The Tumor Suppressor Mst1 Promotes Changes in the Cellular Redox State by Phosphorylation and Inactivation of Peroxiredoxin-1 Protein. Journal of Biological Chemistry, 2013, 288, 8762-8771.	3.4	54
26	Identification of neuronal substrates implicates Pak5 in synaptic vesicle trafficking. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4116-4121.	7.1	20
27	Identification of Allosteric Inhibitors of p21-Activated Kinase. , 2012, 928, 67-79.		1
28	Group I p21-Activated Kinases (PAKs) Promote Tumor Cell Proliferation and Survival through the AKT1 and Raf–MAPK Pathways. Molecular Cancer Research, 2012, 10, 1178-1188.	3.4	42
29	Secretase-Independent and RhoGTPase/PAK/ERK-Dependent Regulation of Cytoskeleton Dynamics in Astrocytes by NSAIDs and Derivatives. Journal of Alzheimer's Disease, 2011, 22, 1135-1155.	2.6	26
30	Face-to-Face, Pak-to-Pak. Structure, 2011, 19, 1723-1724.	3.3	4
31	Comprehensive assay of kinase catalytic activity reveals features of kinase inhibitor selectivity. Nature Biotechnology, 2011, 29, 1039-1045.	17.5	760
32	Pak1 regulates focal adhesion strength, myosin IIA distribution, and actin dynamics to optimize cell migration. Journal of Cell Biology, 2011, 193, 1289-1303.	5.2	82
33	Chemical Genetic Screening for Compounds That Preferentially Inhibit Growth of Methylthioadenosine Phosphorylase (MTAP)–Deficient Saccharomyces cerevisiae. Journal of Biomolecular Screening, 2011, 16, 44-52.	2.6	6
34	Phosphoinositides Are Essential Coactivators for p21-Activated Kinase 1. Molecular Cell, 2010, 40, 493-500.	9.7	43
35	An allosteric kinase inhibitor binds the p21-activated kinase autoregulatory domain covalently. Molecular Cancer Therapeutics, 2009, 8, 2559-2565.	4.1	100
36	Macropinocytosis in Shiga toxin 1 uptake by human intestinal epithelial cells and transcellular transcytosis. American Journal of Physiology - Renal Physiology, 2009, 296, G78-G92.	3.4	89

#	Article	IF	CITATIONS
37	PAK kinase regulates Rac GTPase and is a potential target in human schwannomas. Experimental Neurology, 2009, 218, 137-144.	4.1	34
38	CCL21 mediates CD4+ T-cell costimulation via a DOCK2/Rac-dependent pathway. Blood, 2009, 114, 580-588.	1.4	74
39	An Isoform-Selective, Small-Molecule Inhibitor Targets the Autoregulatory Mechanism of p21-Activated Kinase. Chemistry and Biology, 2008, 15, 322-331.	6.0	328
40	Specificity Profiling of Pak Kinases Allows Identification of Novel Phosphorylation Sites. Journal of Biological Chemistry, 2007, 282, 15667-15678.	3.4	116
41	Crystal Structures of the p21-Activated Kinases PAK4, PAK5, and PAK6 Reveal Catalytic Domain Plasticity of Active Group II PAKs. Structure, 2007, 15, 201-213.	3.3	105
42	Src transforms in a Cool way. Nature Cell Biology, 2006, 8, 905-907.	10.3	3
43	Secramine inhibits Cdc42-dependent functions in cells and Cdc42 activation in vitro. Nature Chemical Biology, 2006, 2, 39-46.	8.0	146
44	Biochemical Suppression of Small-Molecule Inhibitors: A Strategy to Identify Inhibitor Targets and Signaling Pathway Components. Chemistry and Biology, 2006, 13, 443-452.	6.0	67
45	Geometric diversity through permutation of backbone configuration in cyclic peptide libraries. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 5329-5334.	2.2	12
46	Chemical inhibition of N-WASP by stabilization of a native autoinhibited conformation. Nature Structural and Molecular Biology, 2004, 11, 747-755.	8.2	175
47	Autoinhibited proteins as promising drug targets. Journal of Cellular Biochemistry, 2004, 93, 68-73.	2.6	26
48	Small Molecules, Big Impact. Chemistry and Biology, 2002, 9, 1275-1285.	6.0	293
49	Isolation of a mouse cDNA encoding Rab23, a small novel GTPase expressed predominantly in the brain. Gene, 1994, 138, 207-211.	2.2	44