André F Moreira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2683929/publications.pdf

Version: 2024-02-01

45 papers

3,212 citations

26 h-index

218381

42 g-index

45 all docs

45 docs citations

45 times ranked

4888 citing authors

#	Article	IF	CITATIONS
1	3D tumor spheroids: an overview on the tools and techniques used for their analysis. Biotechnology Advances, 2016, 34, 1427-1441.	6.0	579
2	3D tumor spheroids as in vitro models to mimic in vivo human solid tumors resistance to therapeutic drugs. Biotechnology and Bioengineering, 2019, 116, 206-226.	1.7	464
3	Overview of the application of inorganic nanomaterials in cancer photothermal therapy. Biomaterials Science, 2020, 8, 2990-3020.	2.6	208
4	Strategies to Improve Cancer Photothermal Therapy Mediated by Nanomaterials. Advanced Healthcare Materials, 2017, 6, 1700073.	3.9	205
5	Chitosan based-asymmetric membranes for wound healing: A review. International Journal of Biological Macromolecules, 2019, 127, 460-475.	3.6	186
6	Stimuli-responsive mesoporous silica nanoparticles for cancer therapy: A review. Microporous and Mesoporous Materials, 2016, 236, 141-157.	2.2	144
7	An overview of electrospun membranes loaded with bioactive molecules for improving the wound healing process. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 139, 1-22.	2.0	129
8	Spheroids Formation on Nonâ€Adhesive Surfaces by Liquid Overlay Technique: Considerations and Practical Approaches. Biotechnology Journal, 2018, 13, 1700417.	1.8	115
9	Production and characterization of electrospun silk fibroin based asymmetric membranes for wound dressing applications. International Journal of Biological Macromolecules, 2019, 121, 524-535.	3.6	108
10	Microneedle-based delivery devices for cancer therapy: A review. Pharmacological Research, 2019, 148, 104438.	3.1	76
11	Gold-core silica shell nanoparticles application in imaging and therapy: A review. Microporous and Mesoporous Materials, 2018, 270, 168-179.	2.2	67
12	Optical clearing methods: An overview of the techniques used for the imaging of 3D spheroids. Biotechnology and Bioengineering, 2019, 116, 2742-2763.	1.7	65
13	Preparation of end-capped pH-sensitive mesoporous silica nanocarriers for on-demand drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88, 1012-1025.	2.0	61
14	Production and characterization of a novel asymmetric 3D printed construct aimed for skin tissue regeneration. Colloids and Surfaces B: Biointerfaces, 2019, 181, 994-1003.	2.5	61
15	Strategies to improve the photothermal capacity of gold-based nanomedicines. Acta Biomaterialia, 2020, 116, 105-137.	4.1	59
16	Poly (vinyl alcohol)/chitosan layer-by-layer microneedles for cancer chemo-photothermal therapy. International Journal of Pharmaceutics, 2020, 576, 118907.	2.6	57
17	Combinatorial delivery of Crizotinib–Palbociclib–Sildenafil using TPGS-PLA micelles for improved cancer treatment. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88, 718-729.	2.0	53
18	Thermo- and pH-responsive nano-in-micro particles for combinatorial drug delivery to cancer cells. European Journal of Pharmaceutical Sciences, 2017, 104, 42-51.	1.9	48

#	Article	IF	CITATIONS
19	Hyaluronic acid and vitamin E polyethylene glycol succinate functionalized gold-core silica shell nanorods for cancer targeted photothermal therapy. Colloids and Surfaces B: Biointerfaces, 2020, 188, 110778.	2.5	47
20	Development of a poly(vinyl alcohol)/lysine electrospun membrane-based drug delivery system for improved skin regeneration. International Journal of Pharmaceutics, 2019, 570, 118640.	2.6	45
21	Gas-generating TPGS-PLGA microspheres loaded with nanoparticles (NIMPS) for co-delivery of minicircle DNA and anti-tumoral drugs. Colloids and Surfaces B: Biointerfaces, 2015, 134, 287-294.	2.5	39
22	The effect of the shape of gold core–mesoporous silica shell nanoparticles on the cellular behavior and tumor spheroid penetration. Journal of Materials Chemistry B, 2016, 4, 7630-7640.	2.9	36
23	Combining Photothermalâ€Photodynamic Therapy Mediated by Nanomaterials with Immune Checkpoint Blockade for Metastatic Cancer Treatment and Creation of Immune Memory. Advanced Functional Materials, 2021, 31, 2010777.	7.8	36
24	Overview of stimuli-responsive mesoporous organosilica nanocarriers for drug delivery. Pharmacological Research, 2020, 155, 104742.	3.1	33
25	Electrospun Asymmetric Membranes as Promising Wound Dressings: A Review. Pharmaceutics, 2021, 13, 183.	2.0	32
26	Development of poly-2-ethyl-2-oxazoline coated gold-core silica shell nanorods for cancer chemo-photothermal therapy. Nanomedicine, 2018, 13, 2611-2627.	1.7	30
27	Development of gold-core silica shell nanospheres coated with poly-2-ethyl-oxazoline and \hat{l}^2 -cyclodextrin aimed for cancer therapy. Materials Science and Engineering C, 2019, 98, 960-968.	3.8	26
28	ClearT immersion optical clearing method for intact 3D spheroids imaging through confocal laser scanning microscopy. Optics and Laser Technology, 2018, 106, 94-99.	2.2	24
29	Optimization of gold core-mesoporous silica shell functionalization with TPGS and PEI for cancer therapy. Microporous and Mesoporous Materials, 2019, 285, 1-12.	2.2	24
30	Injectable in situ forming hydrogels incorporating dual-nanoparticles for chemo-photothermal therapy of breast cancer cells. International Journal of Pharmaceutics, 2021, 600, 120510.	2.6	21
31	Sulfobetaine methacrylate-functionalized graphene oxide-IR780 nanohybrids aimed at improving breast cancer phototherapy. RSC Advances, 2020, 10, 38621-38630.	1.7	18
32	Functionalization of AuMSS nanorods towards more effective cancer therapies. Nano Research, 2019, 12, 719-732.	5.8	17
33	Chitosan-based injectable in situ forming hydrogels containing dopamine-reduced graphene oxide and resveratrol for breast cancer chemo-photothermal therapy. Biochemical Engineering Journal, 2022, 185, 108529.	1.8	15
34	IR780 loaded gelatinâ€PEG coated gold core silica shell nanorods for cancerâ€ŧargeted photothermal/photodynamic therapy. Biotechnology and Bioengineering, 2022, 119, 644-656.	1.7	12
35	Heptamethine Cyanine-Loaded Nanomaterials for Cancer Immuno-Photothermal/Photodynamic Therapy: A Review. Pharmaceutics, 2022, 14, 1015.	2.0	12
36	Poly(2-ethyl-2-oxazoline) functionalized reduced graphene oxide: Optimization of the reduction process using dopamine and application in cancer photothermal therapy. Materials Science and Engineering C, 2021, 130, 112468.	3.8	11

André F Moreira

#	Article	IF	Citations
37	HA/PEI-coated acridine orange-loaded gold-core silica shell nanorods for cancer-targeted photothermal and chemotherapy. Nanomedicine, 2021, 16, 2569-2586.	1.7	11
38	Polyethylene glycol molecular weight influences the ClearT2 optical clearing method for spheroids imaging by confocal laser scanning microscopy. Journal of Biomedical Optics, 2018, 23, 1.	1.4	10
39	Inorganic-based drug delivery systems for cancer therapy. , 2020, , 283-316.		6
40	Multifunctional nanocarriers for codelivery of nucleic acids and chemotherapeutics to cancer cells. , 2016, , 163-207.		5
41	Sulfobetaine methacrylate-albumin-coated graphene oxide incorporating IR780 for enhanced breast cancer phototherapy. Nanomedicine, 2021, 16, 453-464.	1.7	5
42	Optimization of the GSH-Mediated Formation of Mesoporous Silica-Coated Gold Nanoclusters for NIR Light-Triggered Photothermal Applications. Nanomaterials, 2021, 11, 1946.	1.9	5
43	Combinatorial delivery of doxorubicin and acridine orange by gold core silica shell nanospheres functionalized with poly(ethylene glycol) and 4-methoxybenzamide for cancer targeted therapy. Journal of Inorganic Biochemistry, 2021, 219, 111433.	1.5	4
44	Influence of ClearT and ClearT2 Agitation Conditions in the Fluorescence Imaging of 3D Spheroids. International Journal of Molecular Sciences, 2021, 22, 266.	1.8	3
45	Chitin- and chitosan-based strategies in wound healing. , 2022, , 333-380.		0