List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2683558/publications.pdf Version: 2024-02-01

LIIANA DEDSANO

#	Article	IF	CITATIONS
1	High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene). Nature Communications, 2013, 4, 1633.	5.8	1,001
2	Industrial Upscaling of Electrospinning and Applications of Polymer Nanofibers: A Review. Macromolecular Materials and Engineering, 2013, 298, 504-520.	1.7	750
3	Making silicon hydrophobic: wettability control by two-lengthscale simultaneous patterning with femtosecond laser irradiation. Nanotechnology, 2006, 17, 3234-3238.	1.3	242
4	Patterning of light-emitting conjugated polymer nanofibres. Nature Nanotechnology, 2008, 3, 614-619.	15.6	180
5	Active polymer nanofibers for photonics, electronics, energy generation and micromechanics. Progress in Polymer Science, 2015, 43, 48-95.	11.8	152
6	Enhanced Piezoelectricity of Electrospun Polyvinylidene Fluoride Fibers for Energy Harvesting. ACS Applied Materials & Interfaces, 2020, 12, 13575-13583.	4.0	148
7	Additive Manufacturing: Applications and Directions in Photonics and Optoelectronics. Advanced Optical Materials, 2019, 7, 1800419.	3.6	132
8	Lightâ€Emitting Electrospun Nanofibers for Nanophotonics and Optoelectronics. Macromolecular Materials and Engineering, 2013, 298, 487-503.	1.7	115
9	Metal-Enhanced Near-Infrared Fluorescence by Micropatterned Gold Nanocages. ACS Nano, 2015, 9, 10047-10054.	7.3	96
10	Electronic structure of indium-tin-oxide films fabricated by reactive electron-beam deposition. Physical Review B, 2005, 72, .	1.1	83
11	Room-Temperature Nanoimprint Lithography of Non-thermoplastic Organic Films. Advanced Materials, 2004, 16, 525-529.	11.1	82
12	Cooperativity in the Enhanced Piezoelectric Response of Polymer Nanowires. Advanced Materials, 2014, 26, 7574-7580.	11.1	81
13	Multilevel, Room-Temperature Nanoimprint Lithography for Conjugated Polymer-Based Photonics. Nano Letters, 2005, 5, 1915-1919.	4.5	77
14	Oligomer-based organic distributed feedback lasers by room-temperature nanoimprint lithography. Applied Physics Letters, 2003, 83, 2545-2547.	1.5	76
15	Polymer nanogenerators: Opportunities and challenges for largeâ€scale applications. Journal of Applied Polymer Science, 2018, 135, 45674.	1.3	73
16	Electrospun Nanostructures for High Performance Chemiresistive and Optical Sensors. Macromolecular Materials and Engineering, 2017, 302, 1600569.	1.7	55
17	Single light-emitting polymer nanofiber field-effect transistors. Nanoscale, 2010, 2, 2217.	2.8	53
18	Near-infrared imprinted distributed feedback lasers. Applied Physics Letters, 2006, 89, 201105.	1.5	51

#	Article	IF	CITATIONS
19	Light-emitting nanocomposite CdS–polymer electrospun fibres via in situ nanoparticle generation. Nanoscale, 2011, 3, 4234.	2.8	44
20	Electrically Tunable Organic Distributed Feedback Lasers Embedding Nonlinear Optical Molecules. Advanced Materials, 2012, 24, OP221-5.	11.1	44
21	Distributed Feedback Imprinted Electrospun Fiber Lasers. Advanced Materials, 2014, 26, 6542-6547.	11.1	44
22	Monolithic polymer microcavity lasers with on-top evaporated dielectric mirrors. Applied Physics Letters, 2006, 88, 121110.	1.5	42
23	Physically Transient Photonics: Random <i>versus</i> Distributed Feedback Lasing Based on Nanoimprinted DNA. ACS Nano, 2014, 8, 10893-10898.	7.3	42
24	Polymeric distributed feedback lasers by room-temperature nanoimprint lithography. Applied Physics Letters, 2006, 89, 131109.	1.5	40
25	Soft molding lithography of conjugated polymers. Applied Physics Letters, 2004, 84, 1365-1367.	1.5	39
26	CdS–Polymer Nanocomposites and Lightâ€Emitting Fibers by In Situ Electronâ€Beam Synthesis and Lithography. Advanced Materials, 2012, 24, 5320-5326.	11.1	37
27	Microvascular endothelial cell spreading and proliferation on nanofibrous scaffolds by polymer blends with enhanced wettability. Soft Matter, 2013, 9, 5529.	1.2	35
28	Dry Transient Electronic Systems by Use of Materials that Sublime. Advanced Functional Materials, 2017, 27, 1606008.	7.8	34
29	Polymer nanofibers by soft lithography. Applied Physics Letters, 2005, 87, 123109.	1.5	32
30	Enhancement of light polarization from electrospun polymer fibers by room temperature nanoimprint lithography. Nanotechnology, 2010, 21, 215304.	1.3	31
31	Electrically controlled white laser emission through liquid crystal/polymer multiphases. Light: Science and Applications, 2020, 9, 19.	7.7	31
32	Role of doping concentration on the competition between amplified spontaneous emission and nonradiative energy transfer in blends of conjugated polymers. Physical Review B, 2006, 73, .	1.1	30
33	Controlled Atmosphere Electrospinning of Organic Nanofibers with Improved Light Emission and Waveguiding Properties. Macromolecules, 2015, 48, 7803-7809.	2.2	30
34	Very high-quality distributed Bragg reflectors for organic lasing applications by reactive electron-beam deposition. Optics Express, 2006, 14, 1951.	1.7	29
35	Sub-ms dynamics of the instability onset of electrospinning. Soft Matter, 2015, 11, 3424-3431.	1.2	29
36	Integrated bottom-up and top-down soft lithographies and microfabrication approaches to multifunctional polymers. Journal of Materials Chemistry C, 2013, 1, 7663.	2.7	28

LUANA PERSANO

#	Article	IF	CITATIONS
37	Spatially Confined CdS NCs in Situ Synthesis through Laser Irradiation of Suitable Unimolecular Precursor-Doped Polymer. Journal of Physical Chemistry C, 2012, 116, 25119-25125.	1.5	27
38	Surface-enhanced Raman spectroscopy in 3D electrospun nanofiber mats coated with gold nanorods. Analytical and Bioanalytical Chemistry, 2016, 408, 1357-1364.	1.9	27
39	Optical Gain from the Open Form of a Photochromic Molecule in the Solid State. Journal of Physical Chemistry B, 2006, 110, 4506-4509.	1.2	26
40	Multi-photon in situ synthesis and patterning of polymer-embedded nanocrystals. Journal of Materials Chemistry, 2012, 22, 9787.	6.7	26
41	Soft Nanopatterning on Lightâ€Emitting Inorganic–Organic Composites. Advanced Functional Materials, 2008, 18, 2692-2698.	7.8	24
42	Diverse Regimes of Mode Intensity Correlation in Nanofiber Random Lasers through Nanoparticle Doping. ACS Photonics, 2018, 5, 1026-1033.	3.2	24
43	Planar organic photonic crystals fabricated by soft lithography. Nanotechnology, 2004, 15, 766-770.	1.3	23
44	Reversible Diffraction Efficiency of Photochromic Polymer Gratings Related to Photoinduced Dimensional Changes. Advanced Functional Materials, 2008, 18, 1617-1623.	7.8	23
45	The Secretome Derived From Mesenchymal Stromal Cells Cultured in a Xeno-Free Medium Promotes Human Cartilage Recovery in vitro. Frontiers in Bioengineering and Biotechnology, 2020, 8, 90.	2.0	23
46	Amplified Spontaneous Emission and Waveguiding Properties of the Colored Merocyanine Form of		

#	Article	IF	CITATIONS
55	Emission properties of printed organic semiconductor lasers. Optics Letters, 2005, 30, 260.	1.7	16
56	Registration accuracy in multilevel soft lithography. Nanotechnology, 2007, 18, 175302.	1.3	16
57	Rapid prototyping encapsulation for polymer light-emitting lasers. Applied Physics Letters, 2009, 94, .	1.5	16
58	Multifunctional Polymer Nanofibers: UV Emission, Optical Gain, Anisotropic Wetting, and High Hydrophobicity for Next Flexible Excitation Sources. ACS Applied Materials & Interfaces, 2015, 7, 21907-21912.	4.0	16
59	Low-defectiveness exfoliation of MoS2 nanoparticles and their embedment in hybrid light-emitting polymer nanofibers. Nanoscale, 2018, 10, 21748-21754.	2.8	16
60	Electrospun Conjugated Polymer/Fullerene Hybrid Fibers: Photoactive Blends, Conductivity through Tunneling-AFM, Light Scattering, and Perspective for Their Use in Bulk-Heterojunction Organic Solar Cells. Journal of Physical Chemistry C, 2018, 122, 3058-3067.	1.5	15
61	Laser Systems and Networks with Organic Nanowires and Nanofibers. Advanced Optical Materials, 2019, 7, 1900192.	3.6	15
62	Amplified spontaneous emission from a conjugated polymer undergone a high-temperature lithography cycle. Applied Physics Letters, 2005, 86, 261104.	1.5	14
63	Rapid Soft Lithography by Bottom-Up Enhanced Capillarity. Langmuir, 2004, 20, 4802-4804.	1.6	13
64	Low-threshold blue-emitting monolithic polymer vertical cavity surface-emitting lasers. Applied Physics Letters, 2006, 89, 121111.	1.5	13
65	Organic-based distributed feedback lasers by direct electron-beam lithography on conjugated polymers. Applied Physics Letters, 2007, 91, 101110.	1.5	13
66	Micropatterning control of tubular commitment in human adult renal stem cells. Biomaterials, 2016, 94, 57-69.	5.7	13
67	Enhanced Electrospinning of Active Organic Fibers by Plasma Treatment on Conjugated Polymer Solutions. ACS Applied Materials & Interfaces, 2020, 12, 26320-26329.	4.0	13
68	Study of optical properties of electrospun light-emitting polymer fibers. Superlattices and Microstructures, 2010, 47, 145-149.	1.4	12
69	Electrostatic Mechanophores in Tuneable Lightâ€Emitting Piezopolymer Nanowires. Advanced Materials, 2017, 29, 1701031.	11.1	12
70	Lineage‧pecific Commitment of Stem Cells with Organic and Graphene Oxide–Functionalized Nanofibers. Advanced Functional Materials, 2019, 29, 1806694.	7.8	12
71	Full organic distributed feedback cavities based on a soluble electroluminescent oligothiophene. Physical Review B, 2004, 70, .	1.1	11
72	Electrospun Fluorescent Nanofibers and Their Application in Optical Sensing. Nanoscience and Technology, 2015, , 129-155.	1.5	11

LUANA PERSANO

#	Article	IF	CITATIONS
73	Dye Stabilization and Wavelength Tunability in Lasing Fibers Based on DNA. Advanced Optical Materials, 2020, 8, 2001039.	3.6	11
74	Polarization mode splitting in monolithic polymer microcavities. Applied Physics Letters, 2005, 87, 031103.	1.5	10
75	Low-loss and highly polarized emission from planar polymer waveguides. Optics Letters, 2006, 31, 1429.	1.7	10
76	Polymer to polymer to polymer pattern transfer: Multiple molding for 100â€,nm scale lithography. Journal of Vacuum Science & Technology B, 2006, 24, 807.	1.3	10
77	Monolithic vertical microcavities based on tetracene single crystals. Applied Physics Letters, 2008, 92, 063301.	1.5	10
78	Tailoring optical properties and stimulated emission in nanostructured polythiophene. Scientific Reports, 2019, 9, 7370.	1.6	10
79	Assembly of Pt Nanoparticles on Graphitized Carbon Nanofibers as Hierarchically Structured Electrodes. ACS Applied Nano Materials, 2020, 3, 9880-9888.	2.4	10
80	Rolling particle lithography by soft polymer microparticles. Soft Matter, 2013, 9, 2206.	1.2	9
81	Advancing the Science and Technology of Electrospinning and Functional Nanofibers. Macromolecular Materials and Engineering, 2017, 302, 1700237.	1.7	9
82	Hybrid Nanocomposites for 3D Optics: Using Interpolymer Complexes with Cellulose Nanocrystals. ACS Applied Materials & Interfaces, 2019, 11, 19324-19330.	4.0	9
83	The luminescence quantum yield of organic one-dimensional periodic nanostructures. Nanotechnology, 2004, 15, 953-957.	1.3	7
84	Characterisation of Photocathodes Based on Pb Thin Film Deposited by UV Pulsed Laser Ablation. Journal of Materials Science and Technology, 2014, 30, 37-40.	5.6	7
85	Combined capillary force and step and flash lithography. Nanotechnology, 2005, 16, 391-395.	1.3	6
86	Monolithic organic-oxide microcavities fabricated by low-temperature electron-beam evaporation. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 1654.	1.6	6
87	Reversible wettability of electron-beam deposited indium-tin-oxide driven by ns-UV irradiation. Applied Physics Letters, 2012, 100, 151607.	1.5	6
88	Conformable Nanowire-in-Nanofiber Hybrids for Low-Threshold Optical Gain in the Ultraviolet. ACS Nano, 2020, 14, 8093-8102.	7.3	6
89	Melt electrowriting of poly(vinylidene fluorideâ€ <i>co</i> â€ŧrifluoroethylene). Polymer International, 2021, 70, 1725-1732.	1.6	6
90	Patterning photo-curable light-emitting organic composites by vertical and horizontal capillarity: a general route to photonic nanostructures. Nanotechnology, 2008, 19, 335301.	1.3	5

LUANA PERSANO

#	Article	IF	CITATIONS
91	Thermal tunability of monolithic polymer microcavities. Applied Physics Letters, 2008, 92, 253310.	1.5	5
92	Optimization of electrospinning techniques for the realization of nanofiber plastic lasers. Proceedings of SPIE, 2016, , .	0.8	5
93	Room-temperature nanoimprinting on metallo-organic complexes. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2004, 22, 981.	1.6	4
94	Electron-Beam Nanopatterning and Spectral Modulation of Organic Molecular Light-Emitting Single Crystals. Langmuir, 2014, 30, 1643-1649.	1.6	4
95	Perspectives: Nanofibers and nanowires for disordered photonics. APL Materials, 2017, 5, 035301.	2.2	4
96	3D photo-responsive optical devices manufactured by advanced printing technologies. , 2019, , .		4
97	Naturally Degradable Photonic Devices with Transient Function by Heterostructured Waxyâ€ S ublimating and Waterâ€Soluble Materials. Advanced Science, 2020, 7, 2001594.	5.6	3
98	Solid-state laser devices based on an optically-confined oligothiophene-S,S-dioxide. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 458-461.	0.8	2
99	Absolute luminescence efficiency and photonic band-gap effect of conjugated polymers with top-deposited distributed Bragg reflectors. Chemical Physics Letters, 2005, 411, 316-320.	1.2	2
100	Electron beam and mechanical lithographies as enabling factors for organic-based device fabrication. Materials Science and Engineering C, 2005, 25, 848-852.	3.8	2
101	Real-time monitoring of microfluidic lithography. Synthetic Metals, 2005, 153, 325-328.	2.1	2
102	Imprinting strategies for 100Ânm lithography on polyfluorene and poly(phenylenevinylene) derivatives and their blends. Materials Science and Engineering C, 2007, 27, 1428-1433.	3.8	2
103	Polymer nanofibers as novel light-emitting sources and lasing material. Proceedings of SPIE, 2013, , .	0.8	2
104	Control of photon transport properties in nanocomposite nanowires. Proceedings of SPIE, 2016, , .	0.8	2
105	Oligomer molecules: first-principles investigation of the optical properties and applications to luminescent devices. Physica A: Statistical Mechanics and Its Applications, 2004, 339, 106-111.	1.2	1
106	Polymer microcavities by room temperature electron-beam evaporation of TiOx and SiOx. Synthetic Metals, 2005, 153, 329-332.	2.1	1
107	Longitudinal coherence of organic-based microcavity lasers. Optics Express, 2008, 16, 10384.	1.7	1
108	Nanostructuring poly-[2-methoxy-5-(2â€2-ethyl-hexiloxy)-p-phenylenevinylene] thin films by high-temperature soft lithography. Synthetic Metals, 2003, 139, 679-681.	2.1	0

#	Article	IF	CITATIONS
109	Novel nanofabrication techniques of organic optical cavities. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 531-534.	0.8	0
110	Hybrid planar microresonators with organic and InGaAs active media. Optics Express, 2010, 18, 11650.	1.7	0
111	Electrospun light-emitting nanofibers as building blocks for photonics and electronics. SPIE Newsroom, 0, , .	0.1	0
112	Electrospun conjugated polymer nanofibers as miniaturized light sources: control of morphology, optical properties, and assembly. , 2014, , .		0
113	3D printing of optical materials: an investigation of the microscopic properties. , 2018, , .		0
114	Shaping of Photo-active Materials by 3D Printing. , 2019, , .		0
115	Designing piezo- and pyroelectric energy harvesters. , 2022, , 267-293.		0