
Elzbieta Menaszek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2683004/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thiogenistein—Antioxidant Chemistry, Antitumor Activity, and Structure Elucidation of New Oxidation Products. International Journal of Molecular Sciences, 2022, 23, 7816.	4.1	2
2	Conductive all-carbon nanotube layers: Results on attractive physicochemical, anti-bacterial, anticancer and biocompatibility properties. Materials Science and Engineering C, 2021, 120, 111703.	7.3	12
3	PCL and PCL/bioactive glass biomaterials as carriers for biologically active polyphenolic compounds: Comprehensive physicochemical and biological evaluation. Bioactive Materials, 2021, 6, 1811-1826.	15.6	30
4	Anti-Cancer and Electrochemical Properties of Thiogenistein—New Biologically Active Compound. International Journal of Molecular Sciences, 2021, 22, 8783.	4.1	2
5	Conductive Polyaniline Patterns on Electrospun Polycaprolactone/Hydroxyapatite Scaffolds for Bone Tissue Engineering. Materials, 2021, 14, 4837.	2.9	8
6	Characterization and antidiabetic activity of salicylhydrazone Schiff base vanadium(IV) and (V) complexes. Transition Metal Chemistry, 2021, 46, 201-217.	1.4	18
7	Scaffolds modified with graphene as future implants for nasal cartilage. Journal of Materials Science, 2020, 55, 4030-4042.	3.7	19
8	Surface-Modified Poly(l-lactide-co-glycolide) Scaffolds for the Treatment of Osteochondral Critical Size Defects—In Vivo Studies on Rabbits. International Journal of Molecular Sciences, 2020, 21, 7541.	4.1	8
9	Electrospun polycaprolactone membranes with Zn-doped bioglass for nasal tissues treatment. Journal of Materials Science: Materials in Medicine, 2019, 30, 80.	3.6	30
10	Study on the Materials Formed by Selfâ€Assembling Hydrophobic, Aromatic Peptides Dedicated to Be Used for Regenerative Medicine. Chemistry and Biodiversity, 2019, 16, e1800543.	2.1	5
11	Carbon Nanofibers Coated with Silicon/Calcium-Based Compounds for Medical Application. Journal of Nanomaterials, 2019, 2019, 1-11.	2.7	3
12	Fe-MIL-100 as drug delivery system for asthma and chronic obstructive pulmonary disease treatment and diagnosis. Microporous and Mesoporous Materials, 2019, 280, 264-270.	4.4	33
13	An Inhalable Theranostic System for Local Tuberculosis Treatment Containing an Isoniazid Loaded Metal Organic Framework Fe-MIL-101-NH2—From Raw MOF to Drug Delivery System. Pharmaceutics, 2019, 11, 687.	4.5	42
14	Cell-based Screening For Identification Of The Novel Vanadium Complexes With Multidirectional Activity Relative To The Cells And The Mechanisms Associated With Metabolic Disorders. Science Technology and Innovation, 2019, 4, 47-54.	0.0	3
15	Potentiation of adipogenesis and insulinomimetic effects of novel vanadium complex (N'-[(E)-(5-bromo-2-oxophenyl)methylidene]-4-methoxybenzohydrazide)oxido(1,10-phenanthroline)vanadium(IV) in 3T3-L1 cells. Science Technology and Innovation, 2019, 4, 55-62.	0.0	1
16	A new insight into in vitro behaviour of poly(Îμ-caprolactone)/bioactive glass composites in biologically related fluids. Journal of Materials Science, 2018, 53, 3939-3958.	3.7	30
17	A simple way of modulating in vitro angiogenic response using Cu and Co-doped bioactive glasses. Materials Letters, 2018, 215, 87-90.	2.6	19
18	Biodegradable intramedullary nails reinforced with carbon and alginate fibers: In vitro and in vivo biocompatibility. Journal of Applied Biomaterials and Functional Materials, 2018, 16, 36-41	1.6	2

Elzbieta Menaszek

#	Article	IF	CITATIONS
19	Reconstruction of Ovine Trachea with a Biomimetic Composite Biomaterial. BioMed Research International, 2018, 2018, 1-9.	1.9	4
20	Biocompatibility of Poly(acrylonitrile-butadiene-styrene) Nanocomposites Modified with Silver Nanoparticles. Polymers, 2018, 10, 1257.	4.5	21
21	Biocompatible Nanocomposite Implant with Silver Nanoparticles for Otology—In Vivo Evaluation. Nanomaterials, 2018, 8, 764.	4.1	34
22	Multifunctional polymer coatings for titanium implants. Materials Science and Engineering C, 2018, 93, 950-957.	7.3	27
23	Iron-Based Metal-Organic Frameworks as a Theranostic Carrier for Local Tuberculosis Therapy. Pharmaceutical Research, 2018, 35, 144.	3.5	51
24	Biological effect of hydrothermally synthesized silica nanoparticles within crystalline hydroxyapatite coatings for titanium implants. Materials Science and Engineering C, 2018, 92, 88-95.	7.3	26
25	Search for Fibrous Aggregates Potentially Useful in Regenerative Medicine Formed under Physiological Conditions by Self-Assembling Short Peptides Containing Two Identical Aromatic Amino Acid Residues. Molecules, 2018, 23, 568.	3.8	9
26	Layered gelatin/PLLA scaffolds fabricated by electrospinning and 3D printing- for nasal cartilages and subchondral bone reconstruction. Materials and Design, 2018, 155, 297-306.	7.0	74
27	Polysulphone composite membranes modified with two types of carbon additives as a potential material for bone tissue regeneration. Bulletin of Materials Science, 2017, 40, 201-212.	1.7	3
28	Electrospun polymer scaffolds modified with drugs for tissue engineering. Materials Science and Engineering C, 2017, 77, 493-499.	7.3	32
29	Poly(ε-caprolactone)-based membranes with tunable physicochemical, bioactive and osteoinductive properties. Journal of Materials Science, 2017, 52, 12960-12980.	3.7	10
30	In vitro studies of nanosilver-doped titanium implants for oral and maxillofacial surgery. International Journal of Nanomedicine, 2017, Volume 12, 4285-4297.	6.7	57
31	Middle Ear Prosthesis with Bactericidal Efficacy—In Vitro Investigation. Molecules, 2017, 22, 1681.	3.8	21
32	PLA-Based Hybrid and Composite Electrospun Fibrous Scaffolds as Potential Materials for Tissue Engineering. Journal of Nanomaterials, 2017, 2017, 1-11.	2.7	27
33	Polylactide/polycaprolactone asymmetric membranes for guided bone regeneration. E-Polymers, 2016, 16, 351-358.	3.0	22
34	Poly(ε-caprolactone)/bioactive glass composites enriched with polyphenols extracted from sage (Salvia officinalis L.). Materials Letters, 2016, 183, 386-390.	2.6	17
35	Gel-derived SiO2–CaO–P2O5 bioactive glasses and glass-ceramics modified by SrO addition. Ceramics International, 2016, 42, 5842-5857.	4.8	42
36	On the influence of various physicochemical properties of the CNTs based implantable devices on the fibroblasts' reaction in vitro. Journal of Materials Science: Materials in Medicine, 2015, 26, 262.	3.6	8

Elzbieta Menaszek

#	Article	IF	CITATIONS
37	Effect of the preparation methods on architecture, crystallinity, hydrolytic degradation, bioactivity, and biocompatibility of PCL/bioglass composite scaffolds. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2015, 103, 1580-1593.	3.4	45
38	New generation poly(ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: Part I. Material properties. Materials Science and Engineering C, 2015, 56, 9-21.	7.3	47
39	Influence of different types of carbon nanotubes on muscle cell response. Materials Science and Engineering C, 2015, 46, 218-225.	7.3	16
40	Conductive PANI patterns on electrospun PCL/gelatin scaffolds modified with bioactive particles for bone tissue engineering. Materials Letters, 2015, 138, 60-63.	2.6	40
41	Bioactive nanocomposite PLDL/nano-hydroxyapatite electrospun membranes for bone tissue engineering. Journal of Materials Science: Materials in Medicine, 2014, 25, 1239-1247.	3.6	61
42	Electrospun gelatin/poly(ε-caprolactone) fibrous scaffold modified with calcium phosphate for bone tissue engineering. Materials Science and Engineering C, 2014, 44, 183-190.	7.3	127
43	Fibrous Polymeric Composites Based on Alginate Fibres and Fibres Made of Poly-ε-caprolactone and Dibutyryl Chitin for Use in Regenerative Medicine. Molecules, 2013, 18, 3118-3136.	3.8	18
44	Effect of MWCNT surface and chemical modification on in vitro cellular response. Journal of Nanoparticle Research, 2012, 14, 1181.	1.9	56
45	Some Observations on Carbon Nanotubes Susceptibility to Cell Phagocytosis. Journal of Nanomaterials, 2011, 2011, 1-8.	2.7	29
46	In vitro and in vivo studies on biocompatibility of carbon fibres. Journal of Materials Science: Materials in Medicine, 2010, 21, 2611-2622.	3.6	56
47	InÂvitro and inÂvivo degradation of poly(l-lactide-co-glycolide) films and scaffolds. Journal of Materials Science: Materials in Medicine, 2008, 19, 2063-2070.	3.6	84
48	Comparative in vivo biocompatibility study of single- and multi-wall carbon nanotubes. Acta Biomaterialia, 2008, 4, 1593-1602.	8.3	118
49	The Effect of Malnutrition on Transplantation Immunity and Lymphoid Organs in the Edible FrogRana esculenta. Journal of Nutritional Immunology, 1994, 2, 43-55.	0.1	5