
Jose L Solis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/268286/publications.pdf Version: 2024-02-01

LOSE L SOUS

#	Article	IF	CITATIONS
1	Arsenic in Peruvian rice cultivated in the major rice growing region of Tumbes river basin. Chemosphere, 2020, 241, 125070.	8.2	17
2	Antibacterial Cotton Fabric Functionalized with Copper Oxide Nanoparticles. Molecules, 2020, 25, 5802.	3.8	53
3	In situ growth of CuO nanoparticles onto cotton textiles. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2020, 11, 025009.	1.5	12
4	Influence of Stipa ichu on the thermal and mechanical properties of adobe as a biocomposite material. Journal of Physics: Conference Series, 2020, 1433, 012003.	0.4	6
5	The CuO/ZnO and CuO/ZnO/biochar materials for water treatment. Journal of Physics: Conference Series, 2020, 1433, 012010.	0.4	0
6	Agrowaste derived biochars impregnated with ZnO for removal of arsenic and lead in water. Journal of Environmental Chemical Engineering, 2020, 8, 103800.	6.7	70
7	Influence of natural plasticizers derived from forestry biomass on shrimp husk chitosan films. Journal of Physics: Conference Series, 2019, 1173, 012006.	0.4	2
8	Production and characterization of activated carbon based on coffee husk residue for phosphate removal in aqueous solutions. Journal of Physics: Conference Series, 2019, 1173, 012007.	0.4	2
9	Blocking erythemally weighted UV radiation using cotton fabrics functionalized with ZnO nanoparticles in situ. Applied Surface Science, 2019, 469, 204-212.	6.1	34
10	Composites of ZnO nanoparticles and biomass based activated carbon: adsorption, photocatalytic and antibacterial capacities. Water Science and Technology, 2018, 2017, 492-508.	2.5	32
11	Two Unconventional Precursors to Produce ZnCl ₂ â€Based Activated Carbon for Water Treatment Applications. Chemical Engineering and Technology, 2018, 41, 1649-1659.	1.5	15
12	Thermal properties of adobe employed in Peruvian rural areas: Experimental results and numerical simulation of a traditional bio-composite material. Case Studies in Construction Materials, 2017, 6, 177-191.	1.7	25
13	Caracterización de filtros comerciales para agua a base de carbón activado para el tratamiento de agua del rÃo Tumbes - Perú. Revista Colombiana De Quimica, 2017, 46, 37-45.	0.4	2
14	NanopartÃculas de CuO y su propiedad antimicrobiana en cepas intrahospitalarias. Revista Colombiana De Quimica, 2017, 46, 28-36.	0.4	5
15	Green Synthesis of ZnO ₂ Nanoparticles and Their Annealing Transformation Into ZnO Nanoparticles: Characterization and Antimicrobial Activity. Journal of Nanoscience and Nanotechnology, 2016, 16, 9889-9895.	0.9	5
16	A Comparative Study on Activated Carbons Derived from a Broad Range of Agro-industrial Wastes in Removal of Large-Molecular-Size Organic Pollutants in Aqueous Phase. Water, Air, and Soil Pollution, 2015, 226, 1.	2.4	9
17	Bactericidal, structural and morphological properties of ZnO 2 nanoparticles synthesized under UV or ultrasound irradiation. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2014, 5, 015008.	1.5	1
18	Role of Metal Ions on the Activity of Mycobacterium tuberculosis Pyrazinamidase. American Journal of Tropical Medicine and Hygiene, 2012, 87, 153-161.	1.4	20

Jose L Solis

#	Article	IF	CITATIONS
19	Solar Water Disinfection Studies With Supported TiO2 and Polymer-Supported Ru(II) Sensitizer in a Compound Parabolic Collector. Journal of Solar Energy Engineering, Transactions of the ASME, 2010, 132, .	1.8	7
20	The optimization of gamma spectra processing in prompt gamma neutron activation analysis (PGNAA). Nuclear Instruments & Methods in Physics Research B, 2009, 267, 1139-1148.	1.4	4
21	Solar Photocatalytic Decontamination of Phenol Using Pyrolytic TiO2 Films Deposited Inside Glass Tubing. Journal of Solar Energy Engineering, Transactions of the ASME, 2007, 129, 94-99.	1.8	4
22	In vivo Prompt Gamma Neutron Activation Analysis Facility for Total Body Nitrogen and Cd. AIP Conference Proceedings, 2007, , .	0.4	0
23	Infrared absorption in Li-intercalated tungsten oxide. Solar Energy Materials and Solar Cells, 2007, 91, 1248-1252.	6.2	2
24	SnO2 thin-films prepared by a spray–gel pyrolysis: Influence of sol properties on film morphologies. Thin Solid Films, 2007, 516, 25-33.	1.8	27
25	Photocatalytic degradation of phenol using TiO2 nanocrystals supported on activated carbon. Journal of Molecular Catalysis A, 2005, 228, 293-298.	4.8	121
26	Fluctuation-enhanced multiple-gas sensing by commercial Taguchi sensors. IEEE Sensors Journal, 2005, 5, 1338-1345.	4.7	29
27	Detecting harmful gases using fluctuation-enhanced sensing with Taguchi sensors. IEEE Sensors Journal, 2005, 5, 671-676.	4.7	35
28	Dye-Sensitized Solar Cells Based on Nanocrystalline TiO2Films Surface Treated with Al3+Ions:Â Photovoltage and Electron Transport Studies. Journal of Physical Chemistry B, 2005, 109, 18483-18490.	2.6	88
29	In situlaser reflectometry measurements of pyrolytic ZnO film growth. Measurement Science and Technology, 2005, 16, 685-690.	2.6	9
30	The Influence of the Ethanol-water Molar Ratio in the Precursor Solution on Morphology and Photocatalytic Activity of Pyrolytic ZnO Films¶. Photochemistry and Photobiology, 2005, 81, 783.	2.5	15
31	Highly porous thin films obtained by spray-gel technique. Physica Status Solidi A, 2004, 201, 2370-2374.	1.7	3
32	Synthesis and characterization of rough electrochromic phosphotungstic acid films obtained by spray-gel process. Solar Energy Materials and Solar Cells, 2003, 80, 473-481.	6.2	22
33	Characterization and butanol/ethanol sensing properties of mixed tungsten oxide and copper tungstate films obtained by spray–sol–gel. Thin Solid Films, 2003, 444, 104-110.	1.8	18
34	Agent-induced excess noise in commercial chemical sensors. , 2003, 5115, 211.		1
35	New ways of chemical sensing via fluctuation spectroscopy. , 2001, , .		2
36	Semiconductor gas sensors based on nanostructured tungsten oxide. Thin Solid Films, 2001, 391, 255-260.	1.8	224

Jose L Solis

#	Article	IF	CITATIONS
37	Identifying natural and artificial odours through noise analysis with a sampling-and-hold electronic nose. Sensors and Actuators B: Chemical, 2001, 77, 312-315.	7.8	31
38	Nanocrystalline tungsten oxide thick-films with high sensitivity to H2S at room temperature. Sensors and Actuators B: Chemical, 2001, 77, 316-321.	7.8	88
39	Infrared spectroscopy study of electrochromic nanocrystalline tungsten oxide films made by reactive advanced gas deposition. Journal of Applied Physics, 2001, 89, 2727-2732.	2.5	39
40	Gas‣ensing Properties of Nanocrystalline WO ₃ Films Made by Advanced Reactive Gas Deposition. Journal of the American Ceramic Society, 2001, 84, 1504-1508.	3.8	57
41	Influence of Al, In, Cu, Fe and Sn dopants on the response of thin film ZnO gas sensor to ethanol vapour. Thin Solid Films, 2000, 373, 137-140.	1.8	288
42	Synthesis of new compound semiconductors in the Sn–W–O system for gas-sensing studies. Sensors and Actuators B: Chemical, 2000, 68, 286-292.	7.8	13
43	Dye-Sensitized Nanocrystalline Titanium-Oxide-Based Solar Cells Prepared by Sputtering:Â Influence of the Substrate Temperature During Deposition. Journal of Physical Chemistry B, 2000, 104, 8712-8718.	2.6	35
44	Structure Characterization of Semiconducting Tin and Tungsten Mixed Oxides. Physica Scripta, 1999, T79, 216.	2.5	4
45	Gas-sensing properties of Sn WO3+ mixed oxide thick films. Sensors and Actuators B: Chemical, 1998, 48, 322-327.	7.8	34
46	Characterization of phase structures in semiconductingSnWO4powders by Mössbauer and Raman spectroscopies. Physical Review B, 1998, 57, 13491-13500.	3.2	40
47	Gas-sensing properties of different α-SnWO4-based thick films. Physica Scripta, 1997, T69, 281-285.	2.5	18
48	A study of electrical and optical properties of sputtered SnO2-WO3 thin films. AIP Conference Proceedings, 1996, , .	0.4	0
49	Different thick-film methods in printing of one-electrode semiconductor gas sensors. Sensors and Actuators B: Chemical, 1996, 34, 401-406.	7.8	21
50	A study of gas-sensing properties of sputtered α-SnWO4 thin films. Sensors and Actuators B: Chemical, 1995, 25, 591-595.	7.8	29
51	A study of dual conductance response to carbon monoxide of CdS and α-SnWO4 thin films. Physica Scripta, 1994, T54, 248-251.	2.5	20