
Kalle Heinola

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2682736/publications.pdf Version: 2024-02-01

KALLE HEINOLA

#	Article	IF	CITATIONS
1	Comparative study of deuterium retention and vacancy content of self-ion irradiated tungsten. Journal of Nuclear Materials, 2022, 558, 153373.	2.7	16
2	Data on erosion and hydrogen fuel retention in Beryllium plasma-facing materials. Nuclear Materials and Energy, 2021, 27, 100994.	1.3	21
3	Comparison of JET inner wall erosion in the first three ITER-like wall campaigns. Nuclear Materials and Energy, 2021, 29, 101072.	1.3	5
4	Evaluation of tritium retention in plasma facing components during JET tritium operations. Physica Scripta, 2021, 96, 124075.	2.5	14
5	Molecular dynamics simulations of hydrogen isotope exchange in tungsten vacancies. Nuclear Materials and Energy, 2021, 29, 101099.	1.3	2
6	Determination of retained tritium from ILW dust particles in JET. Nuclear Materials and Energy, 2020, 22, 100673.	1.3	7
7	Comparative study of deuterium retention in irradiated Eurofer and Fe–Cr from a new ion implantation materials facility. Nuclear Fusion, 2020, 60, 016024.	3.5	11
8	Ion beam analysis of fusion plasma-facing materials and components: facilities and research challenges. Nuclear Fusion, 2020, 60, 025001.	3.5	54
9	Comparison of erosion and deposition in JET divertor during the first three ITER-like wall campaigns. Physica Scripta, 2020, T171, 014059.	2.5	19
10	Fuel inventory and material migration of JET main chamber plasma facing components compared over three operational periods. Physica Scripta, 2020, T171, 014051.	2.5	20
11	Deposition in the tungsten divertor during the 2011–2016 campaigns in JET with ITER-like wall. Physica Scripta, 2020, T171, 014044.	2.5	11
12	Effect of composition and surface characteristics on fuel retention in beryllium-containing co-deposited layers. Physica Scripta, 2020, T171, 014038.	2.5	12
13	Hydrogen isotope exchange mechanism in tungsten studied by ERDA. Physica Scripta, 2020, T171, 014056.	2.5	1
14	Improvements to the Sink Strength Theory Used in Multi-Scale Rate Equation Simulations of Defects in Solids. Materials, 2020, 13, 2621.	2.9	4
15	Deuterium retention on the tungsten-coated divertor tiles of JET ITER-like wall in 2015–2016 campaign. Fusion Engineering and Design, 2019, 146, 1979-1982.	1.9	5
16	Erosion, screening, and migration of tungsten in the JET divertor. Nuclear Fusion, 2019, 59, 096035.	3.5	60
17	The influence of carbon impurities on the formation of loops in tungsten irradiated with self-ions. Journal of Nuclear Materials, 2019, 527, 151808.	2.7	24
18	Modelling of the effect of ELMs on fuel retention at the bulk W divertor of JET. Nuclear Materials and Energy, 2019, 19, 397-402.	1.3	7

Kalle Heinola

#	Article	IF	CITATIONS
19	Overview of the JET preparation for deuterium–tritium operation with the ITER like-wall. Nuclear Fusion, 2019, 59, 112021.	3.5	87
20	Beryllium melting and erosion on the upper dump plates in JET during three ITER-like wall campaigns. Nuclear Fusion, 2019, 59, 086009.	3.5	45
21	The effect of beryllium oxide on retention in JET ITER-like wall tiles. Nuclear Materials and Energy, 2019, 19, 346-351.	1.3	15
22	Deposition of impurity metals during campaigns with the JET ITER-like Wall. Nuclear Materials and Energy, 2019, 19, 218-224.	1.3	23
23	Investigation of deuterium trapping and release in the JET ITER-like wall divertor using TDS and TMAP. Nuclear Materials and Energy, 2019, 19, 166-178.	1.3	18
24	Investigation of deuterium trapping and release in the JET divertor during the third ILW campaign using TDS. Nuclear Materials and Energy, 2019, 19, 300-306.	1.3	11
25	Hydrogen isotope exchange in tungsten during annealing in hydrogen atmosphere. Nuclear Fusion, 2019, 59, 026016.	3.5	15
26	Plasma-wall interaction on the divertor tiles of JET ITER-like wall from the viewpoint of micro/nanoscopic observations. Fusion Engineering and Design, 2018, 136, 199-204.	1.9	5
27	Experimental validation of an analytical kinetic model for edge-localized modes in JET-ITER-like wall. Nuclear Fusion, 2018, 58, 066006.	3.5	20
28	On the stability and mobility of di-vacancies in tungsten. Nuclear Fusion, 2018, 58, 026004.	3.5	27
29	Correlation of surface chemical states with hydrogen isotope retention in divertor tiles of JET with ITER-Like Wall. Fusion Engineering and Design, 2018, 132, 24-28.	1.9	15
30	Thermal desorption spectrometry of beryllium plasma facing tiles exposed in the JET tokamak. Fusion Engineering and Design, 2018, 133, 135-141.	1.9	19
31	Assessment of erosion, deposition and fuel retention in the JET-ILW divertor from ion beam analysis data. Nuclear Materials and Energy, 2017, 12, 559-563.	1.3	28
32	Thermodynamics of impurity-enhanced vacancy formation in metals. Journal of Applied Physics, 2017, 121, .	2.5	14
33	Overview of the JET ITER-like wall divertor. Nuclear Materials and Energy, 2017, 12, 499-505.	1.3	46
34	Efficiency of thermal outgassing for tritium retention measurement and removal in ITER. Nuclear Materials and Energy, 2017, 12, 267-272.	1.3	63
35	Long-term fuel retention and release in JET ITER-Like Wall at ITER-relevant baking temperatures. Nuclear Fusion, 2017, 57, 086024.	3.5	25
36	Transient induced tungsten melting at the Joint European Torus (JET). Physica Scripta, 2017, T170, 014013.	2.5	20

KALLE HEINOLA

#	Article	IF	CITATIONS
37	Quartz micro-balance results of pulse-resolved erosion/deposition in the JET-ILW divertor. Nuclear Materials and Energy, 2017, 12, 478-482.	1.3	6
38	Overview of the JET results in support to ITER. Nuclear Fusion, 2017, 57, 102001.	3.5	150
39	Deuterium retention in the divertor tiles of JET ITER-Like wall. Nuclear Materials and Energy, 2017, 12, 655-661.	1.3	13
40	Overview of fuel inventory in JET with the ITER-like wall. Nuclear Fusion, 2017, 57, 086045.	3.5	47
41	Impurity re-distribution in the corner regions of the JET divertor. Physica Scripta, 2017, T170, 014060.	2.5	6
42	Experience on divertor fuel retention after two ITER-Like Wall campaigns. Physica Scripta, 2017, T170, 014063.	2.5	26
43	Analyses of microstructure, composition and retention of hydrogen isotopes in divertor tiles of JET with the ITER-like wall. Physica Scripta, 2017, T170, 014031.	2.5	13
44	Erosion and deposition in the JET divertor during the second ITER-like wall campaign. Physica Scripta, 2017, T170, 014058.	2.5	27
45	Time-resolved deposition in the remote region of the JET-ILW divertor: measurements and modelling. Physica Scripta, 2017, T170, 014059.	2.5	6
46	Plasma–wall interaction studies within the EUROfusion consortium: progress on plasma-facing components development and qualification. Nuclear Fusion, 2017, 57, 116041.	3.5	75
47	Characterisation of the deuterium recycling at the W divertor target plates in JET during steady-state plasma conditions and ELMs. Physica Scripta, 2016, T167, 014076.	2.5	27
48	An interatomic potential for W–N interactions. Modelling and Simulation in Materials Science and Engineering, 2016, 24, 065007.	2.0	5
49	Melt damage to the JET ITER-like Wall and divertor. Physica Scripta, 2016, T167, 014070.	2.5	58
50	Experience of handling beryllium, tritium and activated components from JET ITER like wall. Physica Scripta, 2016, T167, 014057.	2.5	18
51	The role and application of ion beam analysis for studies of plasma-facing components in controlled fusion devices. Nuclear Instruments & Methods in Physics Research B, 2016, 371, 4-11.	1.4	18
52	Deuterium trapping and release in JET ITER-like wall divertor tiles. Physica Scripta, 2016, T167, 014074.	2.5	20
53	Erosion and deposition in the JET divertor during the first ILW campaign. Physica Scripta, 2016, T167, 014051.	2.5	58
54	Studies of Be migration in the JET tokamak using AMS with 10Be marker. Nuclear Instruments & Methods in Physics Research B, 2016, 371, 370-375.	1.4	12

KALLE HEINOLA

#	Article	IF	CITATIONS
55	Deposition in the inner and outer corners of the JET divertor with carbon wall and metallic ITER-like wall. Physica Scripta, 2016, T167, 014052.	2.5	14
56	Long-term fuel retention in JET ITER-like wall. Physica Scripta, 2016, T167, 014075.	2.5	52
57	Analysis of rotating collectors from the private region of JET with carbon wall and metallic ITER-like wall. Journal of Nuclear Materials, 2015, 463, 818-821.	2.7	9
58	First dust study in JET with the ITER-like wall: sampling, analysis and classification. Nuclear Fusion, 2015, 55, 113033.	3.5	51
59	Material deposition on inner divertor quartz-micro balances during ITER-like wall operation in JET. Journal of Nuclear Materials, 2015, 463, 796-799.	2.7	8
60	Fuel retention in JET ITER-Like Wall from post-mortem analysis. Journal of Nuclear Materials, 2015, 463, 961-965.	2.7	50
61	Preliminary Monte Carlo simulation of beryllium migration during JET ITER-like wall divertor operation. Journal of Nuclear Materials, 2015, 463, 800-804.	2.7	3
62	Materials migration in JET with ITER-like wall traced with a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mrow><mml:msup><mml:mrow /><mml:mrow><mml:mn>10</mml:mn></mml:mrow></mml:mrow </mml:msup></mml:mrow>Be isotopic marker. Journal of Nuclear Materials, 2015, 463, 773-776.</mml:math 	2.7	5
63	Beryllium migration in JET ITER-like wall plasmas. Nuclear Fusion, 2015, 55, 063021.	3.5	83
64	Global erosion and deposition patterns in JET with the ITER-like wall. Journal of Nuclear Materials, 2015, 463, 157-161.	2.7	48
65	Tile profiling analysis of samples from the JET ITER-like wall and carbon wall. Physica Scripta, 2014, T159, 014013.	2.5	24
66	Atomistic simulations of Be irradiation on W: mixed layer formation and erosion. Nuclear Fusion, 2014, 54, 083001.	3.5	8
67	The effect of beryllium on deuterium implantation in tungsten by atomistic simulations. Nuclear Fusion, 2014, 54, 123021.	3.5	9
68	Material migration patterns and overview of first surface analysis of the JET ITER-like wall. Physica Scripta, 2014, T159, 014010.	2.5	75
69	First results from the ¹⁰ Be marker experiment in JET with ITER-like wall. Nuclear Fusion, 2014, 54, 082004.	3.5	4
70	First results and surface analysis strategy for plasma-facing components after JET operation with the ITER-like wall. Physica Scripta, 2014, T159, 014016.	2.5	30
71	Carbon–vacancy interaction controls lattice damage recovery in iron. Scripta Materialia, 2014, 86, 9-12.	5.2	28
72	Modelling of monovacancy diffusion in W over wide temperature range. Journal of Applied Physics, 2014, 115, 123504.	2.5	16

Kalle Heinola

#	Article	IF	CITATIONS
73	Surface analysis of tiles and samples exposed to the first JET campaigns with the ITER-like wall. Physica Scripta, 2014, T159, 014012.	2.5	35
74	Evaluation of the neutron activation of JET in-vessel components following DT irradiation. Fusion Engineering and Design, 2014, 89, 2071-2075.	1.9	4
75	A brief summary of the progress on the EFDA tungsten materials program. Journal of Nuclear Materials, 2013, 442, S173-S180.	2.7	69
76	Overview of the JET results with the ITER-like wall. Nuclear Fusion, 2013, 53, 104002.	3.5	70
77	Use of the disruption mitigation valve in closed loop for routine protection at JET. Fusion Engineering and Design, 2013, 88, 1101-1104.	1.9	18
78	Comparison of JET main chamber erosion with dust collected in the divertor. Journal of Nuclear Materials, 2013, 438, S827-S832.	2.7	24
79	Hydrogen retention to impurities in tungsten: A multi-scale study. Journal of Nuclear Materials, 2013, 438, S1001-S1004.	2.7	15
80	Recent progress in research on tungsten materials for nuclear fusion applications in Europe. Journal of Nuclear Materials, 2013, 432, 482-500.	2.7	610
81	Simulation of irradiation induced deuterium trapping in tungsten. Journal of Nuclear Materials, 2012, 427, 152-161.	2.7	63
82	Review on the EFDA programme on tungsten materials technology and science. Journal of Nuclear Materials, 2011, 417, 463-467.	2.7	157
83	Hydrogen interaction with point defects in tungsten. Physical Review B, 2010, 82, .	3.2	216
84	Bond-order potential for point and extended defect simulations in tungsten. Journal of Applied Physics, 2010, 107, .	2.5	76
85	First-principles study of H on the reconstructed W(100) surface. Physical Review B, 2010, 81, .	3.2	69
86	Diffusion of hydrogen in bcc tungsten studied with first principle calculations. Journal of Applied Physics, 2010, 107, .	2.5	174
87	Deuterium irradiation-induced defect concentrations in tungsten. Physica Scripta, 2007, T128, 91-95.	2.5	20
88	Quantification of deuterium irradiation induced defect concentrations in tungsten. Nuclear Instruments & Methods in Physics Research B, 2006, 249, 436-439.	1.4	12
89	Effect of Hydrogen on Flaking of Carbon Films on Mo and W. Physica Scripta, 2004, , 63.	2.5	2