Dunja Å amec

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2682222/publications.pdf

Version: 2024-02-01

43 papers 2,217 citations

331538
21
h-index

289141 40 g-index

44 all docs

44 docs citations

times ranked

44

2927 citing authors

#	Article	IF	CITATIONS
1	Flavonoid biosynthetic pathways in plants: Versatile targets for metabolic engineering. Biotechnology Advances, 2020, 38, 107316.	6.0	307
2	The Role of Polyphenols in Abiotic Stress Response: The Influence of Molecular Structure. Plants, 2021, 10, 118.	1.6	295
3	Kale (<i>Brassica oleracea</i> var. <i>acephala</i>) as a superfood: Review of the scientific evidence behind the statement. Critical Reviews in Food Science and Nutrition, 2019, 59, 2411-2422.	5.4	142
4	Resveratrol and Alzheimer's Disease: Mechanistic Insights. Molecular Neurobiology, 2017, 54, 2622-2635.	1.9	140
5	Apigenin as neuroprotective agent: Of mice and men. Pharmacological Research, 2018, 128, 359-365.	3.1	135
6	Assessment of the differences in the physical, chemical and phytochemical properties of four strawberry cultivars using principal component analysis. Food Chemistry, 2016, 194, 828-834.	4.2	100
7	Oleanolic Acid Alters Multiple Cell Signaling Pathways: Implication in Cancer Prevention and Therapy. International Journal of Molecular Sciences, 2017, 18, 643.	1.8	97
8	Antioxidant stability of small fruits in postharvest storage at room and refrigerator temperatures. Food Research International, 2011, 44, 345-350.	2.9	84
9	Antioxidant and antimicrobial properties of Moltkia petraea (Tratt.) Griseb. flower, leaf and stem infusions. Food and Chemical Toxicology, 2010, 48, 1537-1542.	1.8	73
10	Rutin as Neuroprotective Agent: From Bench to Bedside. Current Medicinal Chemistry, 2019, 26, 5152-5164.	1.2	70
11	White cabbage (Brassica oleracea var. capitata f. alba): botanical, phytochemical and pharmacological overview. Phytochemistry Reviews, 2017, 16, 117-135.	3.1	69
12	Antioxidant potency of white (Brassica oleracea L. var. capitata) and Chinese (Brassica rapa L. var.) Tj ETQq0 0 0 Scientia Horticulturae, 2011, 128, 78-83.	rgBT /Ovei 1.7	rlock 10 Tf 50 67
13	Involvement of Phenolic Acids in Short-Term Adaptation to Salinity Stress is Species-Specific among Brassicaceae. Plants, 2019, 8, 155.	1.6	65
14	Antioxidant and antimicrobial properties of Teucrium arduini L. (Lamiaceae) flower and leaf infusions (Teucrium arduini L. antioxidant capacity). Food and Chemical Toxicology, 2010, 48, 113-119.	1.8	53
15	Comparative analysis of phytochemicals and activity of endogenous enzymes associated with their stability, bioavailability and food quality in five Brassicaceae sprouts. Food Chemistry, 2018, 269, 96-102.	4.2	48
16	Integrative Approaches for the Identification and Localization of Specialized Metabolites in <i>Tripterygium</i> Roots. Plant Physiology, 2017, 173, 456-469.	2.3	47
17	Postharvest stability of antioxidant compounds in hawthorn and cornelian cherries at room and refrigerator temperaturesâ€"Comparison with blackberries, white and red grapes. Scientia Horticulturae, 2011, 131, 15-21.	1.7	46
18	Biflavonoids: Important Contributions to the Health Benefits of Ginkgo (Ginkgo biloba L.). Plants, 2022, 11, 1381.	1.6	39

#	Article	IF	CITATIONS
19	Salinity Stress as an Elicitor for Phytochemicals and Minerals Accumulation in Selected Leafy Vegetables of Brassicaceae. Agronomy, 2021, 11, 361.	1.3	32
20	Phytoremediation of Cadmium Polluted Soils: Current Status and Approaches for Enhancing. Soil Systems, 2022, 6, 3.	1.0	28
21	Assessing the authenticity of the white cabbage (Brassica oleracea var. capitata f. alba) cv. â€Varaždinski' by molecular and phytochemical markers. Food Research International, 2014, 60, 266-272.	2.9	23
22	Flavonoids Target Human Herpesviruses That Infect the Nervous System: Mechanisms of Action and Therapeutic Insights. Viruses, 2022, 14, 592.	1.5	23
23	Chilling and Freezing Temperature Stress Differently Influence Glucosinolates Content in Brassica oleracea var. acephala. Plants, 2021, 10, 1305.	1.6	22
24	Fluctuations in the Levels of Antioxidant Compounds and Antioxidant Capacity of Ten Small Fruits During One Year of Frozen Storage. International Journal of Food Properties, 2015, 18, 21-32.	1.3	21
25	Cruciferous (Brassicaceae) Vegetables. , 2019, , 195-202.		17
26	Effects of Short-Term Exposure to Low Temperatures on Proline, Pigments, and Phytochemicals Level in Kale (Brassica oleracea var. acephala). Horticulturae, 2021, 7, 341.	1.2	17
27	Phenolic acids significantly contribute to antioxidant potency of Gynostemma pentaphyllum aqueous and methanol extracts. Industrial Crops and Products, 2016, 84, 104-107.	2.5	15
28	Herbal Teas., 2013,, 129-140.		14
29	Assessing Chemical Diversity in Psilotum nudum (L.) Beauv., a Pantropical Whisk Fern That Has Lost Many of Its Fern-Like Characters. Frontiers in Plant Science, 2019, 10, 868.	1.7	14
30	Influence of Seed Origin on Morphological Characteristics and Phytochemicals Levels in Brassica oleracea var. acephala. Agronomy, 2019, 9, 502.	1.3	14
31	Influence of stress hormones on the auxin homeostasis in Brassica rapa seedlings. Plant Cell Reports, 2013, 32, 1031-1042.	2.8	12
32	Genetic and phytochemical variability of six Teucrium arduini L. populations and their antioxidant/prooxidant behaviour examined by biochemical, macromolecule- and cell-based approaches. Food Chemistry, 2015, 186, 298-305.	4.2	12
33	Antioxidant Properties of Extracts of Wild Medicinal Mushroom Species from Croatia. International Journal of Medicinal Mushrooms, 2011, 13, 257-263.	0.9	11
34	Low Temperatures Affect the Physiological Status and Phytochemical Content of Flat Leaf Kale (Brassica oleracea var. acephala) Sprouts. Foods, 2022, 11, 264.	1.9	11
35	Integrated morphological with molecular identification and bioactive compounds of 23 Croatian wild mushrooms samples. Food Bioscience, 2020, 37, 100720.	2.0	10
36	Beneficial Microbes and Molecules for Mitigation of Soil Salinity in Brassica Species: A Review. Soil Systems, 2022, 6, 18.	1.0	8

Dunja Åamec

#	Article	IF	CITATION
37	Molecular and cellular approach in the study of antioxidant/pro-oxidant properties ofMicromeria croatica(Pers.) Schott. Natural Product Research, 2015, 29, 1770-1774.	1.0	7
38	Thinking for the future: Phytoextraction of cadmium using primed plants for sustainable soil cleanâ€up. Physiologia Plantarum, 2022, 174, .	2.6	7
39	Evaluation of the status quo of polyphenols analysis: Part II—Analysis methods and food processing effects. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 3219-3240.	5.9	6
40	Comparative study of methodologies to determine the antioxidant capacity of Al-toxified blueberry amended with calcium sulfate. Journal of Soil Science and Plant Nutrition, 2015, , 0-0.	1.7	5
41	Rhamnus intermedia Steud. et Hochst. – a New Source of Bioactive Phytochemicals. Croatica Chemica Acta, 2012, 85, 125-129.	0.1	4
42	Differential Accumulation of Metabolites and Transcripts Related to Flavonoid, Styrylpyrone, and Galactolipid Biosynthesis in Equisetum Species and Tissue Types. Metabolites, 2022, 12, 403.	1.3	3
43	Analytical methods focused on studying phytonutrients in food. , 2020, , 237-244.		1