Enza Maria Valente

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2682221/publications.pdf

Version: 2024-02-01

275 papers

27,988 citations

16451 64 h-index 159 g-index

286 all docs

286 docs citations

286 times ranked

37089 citing authors

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
3	Hereditary Early-Onset Parkinson's Disease Caused by Mutations in <i>PINK1</i> . Science, 2004, 304, 1158-1160.	12.6	3,060
4	An SCN9A channelopathy causes congenital inability to experience pain. Nature, 2006, 444, 894-898.	27.8	1,353
5	Localization of a Novel Locus for Autosomal Recessive Early-Onset Parkinsonism, PARK6, on Human Chromosome 1p35-p36. American Journal of Human Genetics, 2001, 68, 895-900.	6.2	459
6	PINK1 mutations are associated with sporadic earlyâ€onset parkinsonism. Annals of Neurology, 2004, 56, 336-341.	5. 3	447
7	Characterization of human disease phenotypes associated with mutations in <i>TREX1</i> , <i>RNASEH2A</i> , <i>RNASEH2B</i> , <i>RNASEH2C</i> , <i>SAMHD1</i> , <i>ADAR</i> , and <i>IFIH1</i> American Journal of Medical Genetics, Part A, 2015, 167, 296-312.	1.2	447
8	Mitochondrial import and enzymatic activity of PINK1 mutants associated to recessive parkinsonism. Human Molecular Genetics, 2005, 14, 3477-3492.	2.9	413
9	Mutations in INPP5E, encoding inositol polyphosphate-5-phosphatase E, link phosphatidyl inositol signaling to the ciliopathies. Nature Genetics, 2009, 41, 1032-1036.	21.4	383
10	Parkes Weber syndrome, vein of Galen aneurysmal malformation, and other fast-flow vascular anomalies are caused byRASA1 mutations. Human Mutation, 2008, 29, 959-965.	2.5	382
11	Clinical and Molecular Phenotype of Aicardi-GoutiÃ'res Syndrome. American Journal of Human Genetics, 2007, 81, 713-725.	6.2	375
12	Mutations in CEP290, which encodes a centrosomal protein, cause pleiotropic forms of Joubert syndrome. Nature Genetics, 2006, 38, 623-625.	21.4	368
13	Mutations in the Cilia Gene ARL13B Lead to the Classical Form of Joubert Syndrome. American Journal of Human Genetics, 2008, 83, 170-179.	6.2	352
14	Motile and nonâ€motile cilia in human pathology: from function to phenotypes. Journal of Pathology, 2017, 241, 294-309.	4.5	341
15	Joubert Syndrome and related disorders. Orphanet Journal of Rare Diseases, 2010, 5, 20.	2.7	325
16	Joubert syndrome: congenital cerebellar ataxia with the molar tooth. Lancet Neurology, The, 2013, 12, 894-905.	10.2	307
17	Association of LRRK2 exonic variants with susceptibility to Parkinson's disease: a case–control study. Lancet Neurology, The, 2011, 10, 898-908.	10.2	294
18	Mutations in TMEM216 perturb ciliogenesis and cause Joubert, Meckel and related syndromes. Nature Genetics, 2010, 42, 619-625.	21.4	261

#	Article	IF	CITATIONS
19	Translation Initiator EIF4G1 Mutations in Familial Parkinson Disease. American Journal of Human Genetics, 2011, 89, 398-406.	6.2	250
20	PINK1 and BECN1 relocalize at mitochondria-associated membranes during mitophagy and promote ER-mitochondria tethering and autophagosome formation. Autophagy, 2017, 13, 654-669.	9.1	249
21	The Parkinson-associated protein PINK1 interacts with Beclin1 and promotes autophagy. Cell Death and Differentiation, 2010, 17, 962-974.	11.2	233
22	Pallidal stimulation improves pantothenate kinase–associated neurodegeneration. Annals of Neurology, 2005, 57, 738-741.	5. 3	227
23	Dystonia. Nature Reviews Disease Primers, 2018, 4, 25.	30 . 5	223
24	Primary cilia in neurodevelopmental disorders. Nature Reviews Neurology, 2014, 10, 27-36.	10.1	215
25	Clinical and subclinical dopaminergic dysfunction in PARK6-linked parkinsonism: An18F-dopa PET study. Annals of Neurology, 2002, 52, 849-853.	5. 3	192
26	AHI1 is required for photoreceptor outer segment development and is a modifier for retinal degeneration in nephronophthisis. Nature Genetics, 2010, 42, 175-180.	21.4	171
27	<i>PRRT2</i> gene mutations. Neurology, 2012, 79, 2115-2121.	1.1	159
28	CEP41 is mutated in Joubert syndrome and is required for tubulin glutamylation at the cilium. Nature Genetics, 2012, 44, 193-199.	21.4	157
29	Syndromic parkinsonism and dementia associated with <scp><i>OPA</i></scp> <i>1</i> missense mutations. Annals of Neurology, 2015, 78, 21-38.	5. 3	154
30	Dopa-responsive dystonia: A clinical and molecular genetic study. Annals of Neurology, 1998, 44, 649-656.	5. 3	153
31	Deep brain stimulation in myoclonus-dystonia syndrome. Movement Disorders, 2004, 19, 724-727.	3.9	140
32	Mutant Pink1 induces mitochondrial dysfunction in a neuronal cell model of Parkinson's disease by disturbing calcium flux. Journal of Neurochemistry, 2009, 108, 1561-1574.	3.9	139
33	CEP290 Mutations Are Frequently Identified in the Oculo-Renal Form of Joubert Syndrome–Related Disorders. American Journal of Human Genetics, 2007, 81, 104-113.	6.2	137
34	Transcriptional regulator PRDM12 is essential for human pain perception. Nature Genetics, 2015, 47, 803-808.	21.4	137
35	The diverse phenotype and genotype of pantothenate kinase-associated neurodegeneration. Neurology, 2005, 64, 1810-1812.	1.1	136
36	PINK1 protects against cell death induced by mitochondrial depolarization, by phosphorylating Bcl-xL and impairing its pro-apoptotic cleavage. Cell Death and Differentiation, 2013, 20, 920-930.	11.2	136

#	Article	IF	Citations
37	Diffusion Tensor Imaging in Joubert Syndrome. American Journal of Neuroradiology, 2007, 28, 1929-1933.	2.4	134
38	Clinical and Molecular Genetics of Leber's Congenital Amaurosis: A Multicenter Study of Italian Patients., 2007, 48, 4284.		131
39	Genotypes and phenotypes of Joubert syndrome and related disorders. European Journal of Medical Genetics, 2008, 51, 1-23.	1.3	127
40	AHI1gene mutations cause specific forms of Joubert syndrome-related disorders. Annals of Neurology, 2006, 59, 527-534.	5.3	125
41	Defective temporal processing of sensory stimuli in DYT1 mutation carriers: a new endophenotype of dystonia?. Brain, 2006, 130, 134-142.	7.6	122
42	DYT13, a novel primary torsion dystonia locus, maps to chromosome 1p36.13-36.32 in an Italian family with cranial-cervical or upper limb onset. Annals of Neurology, 2001, 49, 362-366.	5. 3	118
43	A useful electrophysiologic parameter for diagnosis of carpal tunnel syndrome. , 1996, 19, 48-53.		114
44	A Homozygous <i>PDE6D </i> Mutation in Joubert Syndrome Impairs Targeting of Farnesylated INPP5E Protein to the Primary Cilium. Human Mutation, 2014, 35, 137-146.	2.5	113
45	Mitochondrial damage-associated inflammation highlights biomarkers in PRKN/PINK1 parkinsonism. Brain, 2020, 143, 3041-3051.	7.6	105
46	Distinguishing the four genetic causes of jouberts syndrome-related disorders. Annals of Neurology, 2005, 57, 513-519.	5.3	104
47	Park6â€linked parkinsonism occurs in several european families. Annals of Neurology, 2002, 51, 14-18.	5.3	98
48	MKS5 and CEP290 Dependent Assembly Pathway of the Ciliary Transition Zone. PLoS Biology, 2016, 14, e1002416.	5.6	98
49	Phenotypic spectrum of alpha-synuclein mutations: New insights from patients and cellular models. Parkinsonism and Related Disorders, 2016, 22, S16-S20.	2.2	98
50	<i>MKS3/TMEM67</i> mutations are a major cause of COACH Syndrome, a Joubert Syndrome related disorder with liver involvement. Human Mutation, 2009, 30, E432-E442.	2.5	96
51	Independent and joint effects of the <i>MAPT</i> and <i>SNCA</i> genes in Parkinson disease. Annals of Neurology, 2011, 69, 778-792.	5.3	92
52	Description, Nomenclature, and Mapping of a Novel Cerebello-Renal Syndrome with the Molar Tooth Malformation. American Journal of Human Genetics, 2003, 73, 663-670.	6.2	91
53	The <scp>C</scp> ontursi <scp>F</scp> amily 20 <scp>Y</scp> ears <scp>L</scp> ater: <scp>I</scp> ntrafamilial <scp>P</scp> henotypic <scp>V</scp> ariability of the <scp><i>SNCA</i></scp> p. <scp>A</scp> 53T <scp>M</scp> utation. Movement Disorders, 2016, 31, 257-258.	3.9	86
54	Genetic and clinical heterogeneity in paroxysmal kinesigenic dyskinesia: Evidence for a third EKD gene. Movement Disorders, 2002, 17, 717-725.	3.9	85

#	Article	IF	CITATIONS
55	Evolutionarily Assembled cis-Regulatory Module at a Human Ciliopathy Locus. Science, 2012, 335, 966-969.	12.6	84
56	<i>GNAO1</i> encephalopathy. Neurology: Genetics, 2017, 3, e143.	1.9	84
57	<scp><i>GBA</i>â€Related</scp> Parkinson's Disease: Dissection of Genotype–Phenotype Correlates in a Large Italian Cohort. Movement Disorders, 2020, 35, 2106-2111.	3.9	83
58	Clinical and genetic studies in hereditary spastic paraplegia with thin corpus callosum. Neurology, 2004, 62, 262-268.	1.1	82
59	The PINK1 phenotype can be indistinguishable from idiopathic Parkinson disease. Neurology, 2005, 64, 1958-1960.	1.1	81
60	The epsilon-sarcoglycan gene in myoclonic syndromes. Neurology, 2005, 64, 737-739.	1.1	80
61	<i>CC2D2A</i> mutations in Meckel and Joubert syndromes indicate a genotype-phenotype correlation. Human Mutation, 2009, 30, 1574-1582.	2.5	80
62	Novel <i>TMEM67</i> mutations and genotype-phenotype correlates in meckelin-related ciliopathies. Human Mutation, 2010, 31, n/a-n/a.	2.5	77
63	Mitochondrial dysfunction in Parkinson disease: evidence in mutant PARK2 fibroblasts. Frontiers in Genetics, 2015, 6, 78.	2.3	77
64	Joubert syndrome and related disorders. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2013, 113, 1879-1888.	1.8	75
65	PINK1heterozygous rare variants: prevalence, significance and phenotypic spectrum. Human Mutation, 2008, 29, 565-565.	2.5	74
66	A new family with paroxysmal exercise induced dystonia and migraine: a clinical and genetic study. Journal of Neurology, Neurosurgery and Psychiatry, 2000, 68, 609-614.	1.9	72
67	Whole gene deletion and splicing mutations expand the PINK1 genotypic spectrum. Human Mutation, 2007, 28, 98-98.	2.5	66
68	Biallelic mutations in the $3\hat{a}\in^2$ exonuclease TOE1 cause pontocerebellar hypoplasia and uncover a role in snRNA processing. Nature Genetics, 2017, 49, 457-464.	21.4	66
69	Healthcare recommendations for Joubert syndrome. American Journal of Medical Genetics, Part A, 2020, 182, 229-249.	1.2	66
70	Phenotypic characterisation of autosomal recessive PARK6-linked parkinsonism in three unrelated Italian families. Movement Disorders, 2001, 16, 999-1006.	3.9	65
71	Infantile ascending hereditary spastic paralysis (IAHSP). Neurology, 2003, 60, 674-682.	1.1	64
72	<i>RPGRIP1L</i> mutations are mainly associated with the cerebelloâ€renal phenotype of Joubert syndromeâ€related disorders. Clinical Genetics, 2008, 74, 164-170.	2.0	64

#	Article	IF	CITATIONS
73	Delineation and Diagnostic Criteria of Oral-Facial-Digital Syndrome Type VI. Orphanet Journal of Rare Diseases, 2012, 7, 4.	2.7	64
74	Phenotypic spectrum and prevalence of INPP5E mutations in Joubert Syndrome and related disorders. European Journal of Human Genetics, 2013, 21, 1074-1078.	2.8	64
75	Functional genome-wide siRNA screen identifies KIAA0586 as mutated in Joubert syndrome. ELife, 2015, 4, e06602.	6.0	64
76	Mutations in B9D1 and MKS1 cause mild Joubert syndrome: expanding the genetic overlap with the lethal ciliopathy Meckel syndrome. Orphanet Journal of Rare Diseases, 2014, 9, 72.	2.7	63
77	<i>RFC1</i> expansions are a common cause of idiopathic sensory neuropathy. Brain, 2021, 144, 1542-1550.	7.6	63
78	Impulsive-compulsive behaviors in <i>parkin</i> -associated Parkinson disease. Neurology, 2016, 87, 1436-1441.	1.1	61
79	Surgical prognosis in carpal tunnel syndrome: usefulness of a preoperative neurophysiological assessment. Acta Neurologica Scandinavica, 1996, 94, 343-346.	2.1	59
80	Analysis of the ?-sarcoglycan gene in familial and sporadic myoclonus-dystonia: Evidence for genetic heterogeneity. Movement Disorders, 2003, 18, 1047-1051.	3.9	58
81	Mutation of <i>POC1B </i> ii a Severe Syndromic Retinal Ciliopathy. Human Mutation, 2014, 35, 1153-1162.	2.5	57
82	A family study on primary blepharospasm. Journal of Neurology, Neurosurgery and Psychiatry, 2006, 77, 252-254.	1.9	56
83	Global investigation and meta-analysis of the <i>C9orf72</i> (G ₄ C ₂) _n repeat in Parkinson disease. Neurology, 2014, 83, 1906-1913.	1.1	56
84	Mutations in <i>CEP120 < /i> cause Joubert syndrome as well as complex ciliopathy phenotypes. Journal of Medical Genetics, 2016, 53, 608-615.</i>	3.2	55
85	Assessing the role ofDRD5 andDYT1 in two different case–control series with primary blepharospasm. Movement Disorders, 2007, 22, 162-166.	3.9	54
86	Genomeâ€wide association study in musician's dystonia: A risk variant at the arylsulfatase G locus?. Movement Disorders, 2014, 29, 921-927.	3.9	53
87	PINK1 in the limelight: multiple functions of an eclectic protein in human health and disease. Journal of Pathology, 2017, 241, 251-263.	4.5	52
88	Ataxia, Intellectual Disability, and Ocular Apraxia with Cerebellar Cysts: A New Disease?. Cerebellum, 2014, 13, 79-88.	2.5	50
89	Phenotypic variability of PINK1 expression: 12 Years' clinical follow-up of two Italian families. Movement Disorders, 2014, 29, 1561-1566.	3.9	48
90	PINK1 homozygous W437X mutation in a patient with apparent dominant transmission of parkinsonism. Movement Disorders, 2006, 21, 1265-1267.	3.9	46

#	Article	IF	CITATIONS
91	Primary torsion dystonia: the search for genes is not over. Journal of Neurology, Neurosurgery and Psychiatry, 1999, 67, 395-397.	1.9	45
92	Hypomorphic Recessive Variants in SUFU Impair the Sonic Hedgehog Pathway and Cause Joubert Syndrome with Cranio-facial and Skeletal Defects. American Journal of Human Genetics, 2017, 101, 552-563.	6.2	45
93	Novel locus for autosomal dominant pure hereditary spastic paraplegia (SPG19) maps to chromosome 9q33-q34. Annals of Neurology, 2002, 51, 681-685.	5.3	44
94	Pontine tegmental cap dysplasia: developmental and cognitive outcome in three adolescent patients. Orphanet Journal of Rare Diseases, 2011, 6, 36.	2.7	44
95	Familial blepharospasm is inherited as an autosomal dominant trait and relates to a novel unassigned gene. Movement Disorders, 2003, 18, 207-212.	3.9	43
96	Spastic paraplegia with thin corpus callosum: description of 20 new families, refinement of the SPG11 locus, candidate gene analysis and evidence of genetic heterogeneity. Neurogenetics, 2006, 7, 149-156.	1.4	43
97	Mutation screening of the DYT6/ <i>THAP1</i>	3.9	43
98	Clinical, neuroradiological and molecular characterization of cerebellar dysplasia with cysts (Poretti–Boltshauser syndrome). European Journal of Human Genetics, 2016, 24, 1262-1267.	2.8	43
99	Phenotypic characterization of DYT13 primary torsion dystonia. Movement Disorders, 2004, 19, 200-206.	3.9	40
100	Atypical phenotypes and clinical variability in a large Italian family with DYT1-primary torsion dystonia. Movement Disorders, 2006, 21, 1782-1784.	3.9	40
101	<i>PINK1</i> heterozygous mutations induce subtle alterations in dopamineâ€dependent synaptic plasticity. Movement Disorders, 2014, 29, 41-53.	3.9	40
102	A novel mutation in the endosomal Na+/H+ exchanger NHE6 (SLC9A6) causes Christianson syndrome with electrical status epilepticus during slow-wave sleep (ESES). Epilepsy Research, 2014, 108, 811-815.	1.6	40
103	Nephronophthisis type 1 deletion syndrome with neurological symptoms: Prevalence and significance of the association. Kidney International, 2006, 70, 1342-1347.	5.2	39
104	Olfactory dysfunction in Parkinsonism caused by <i>PINK1</i> mutations. Movement Disorders, 2009, 24, 2350-2357.	3.9	39
105	The use of muscle biopsy in the diagnosis of undefined ataxia with cerebellar atrophy in children. European Journal of Paediatric Neurology, 2012, 16, 248-256.	1.6	39
106	Expanding <i>CEP290</i> mutational spectrum in ciliopathies. American Journal of Medical Genetics, Part A, 2009, 149A, 2173-2180.	1.2	38
107	Mutations in Extracellular Matrix Genes <i>NID1</i> li>and <i>LAMC1</i> Cause Autosomal Dominant Dandy-Walker Malformation and Occipital Cephaloceles. Human Mutation, 2013, 34, 1075-1079.	2.5	38
108	Genotype–phenotype correlates in Joubert syndrome: A review. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2022, 190, 72-88.	1.6	37

#	Article	lF	Citations
109	Ophthalmological findings in Joubert syndrome. Eye, 2010, 24, 222-225.	2.1	36
110	The protective effect of LRRK2 p.R1398H on risk of Parkinson's disease is independent of MAPT and SNCA variants. Neurobiology of Aging, 2014, 35, 266.e5-266.e14.	3.1	36
111	Exposure to low-dose rotenone precipitates synaptic plasticity alterations in PINK1 heterozygous knockout mice. Neurobiology of Disease, 2016, 91, 21-36.	4.4	36
112	Tubulin-related cerebellar dysplasia: definition of a distinct pattern of cerebellar malformation. European Radiology, 2017, 27, 5080-5092.	4.5	36
113	Establishment of stable iPS-derived human neural stem cell lines suitable for cell therapies. Cell Death and Disease, 2018, 9, 937.	6.3	36
114	Parkinson Disease Genetics: A "Continuum―from Mendelian to Multifactorial Inheritance. Current Molecular Medicine, 2014, 14, 1079-1088.	1.3	36
115	Severe infantile hyperkalaemic periodic paralysis and paramyotonia congenita: broadening the clinical spectrum associated with the T704M mutation in SCN4A. Journal of Neurology, Neurosurgery and Psychiatry, 2003, 74, 1339-1341.	1.9	35
116	Normal Cognitive Functions in Joubert Syndrome. Neuropediatrics, 2009, 40, 287-290.	0.6	35
117	The <i>TOR1A</i> polymorphism rs1182 and the risk of spread in primary blepharospasm. Movement Disorders, 2009, 24, 613-616.	3.9	35
118	Molecular pathways in sporadic PD. Parkinsonism and Related Disorders, 2012, 18, S71-S73.	2.2	35
119	Phenotypic variability of DYT1-PTD: Does the clinical spectrum include psychogenic dystonia?. Movement Disorders, 2002, 17, 1058-1063.	3.9	34
120	PARK6 is a common cause of familial parkinsonism. Neurological Sciences, 2002, 23, s117-s118.	1.9	34
121	The Molar Tooth Sign Is Pathognomonic for Joubert Syndrome!. Pediatric Neurology, 2014, 50, e15-e16.	2.1	34
122	Clinical features for diagnosis and management of patients with PRDM12 congenital insensitivity to pain. Journal of Medical Genetics, 2016, 53, 533-535.	3.2	34
123	Subclinical sensory abnormalities in unaffected PINK1 heterozygotes. Journal of Neurology, 2008, 255, 1372-1377.	3.6	31
124	Defining the Epsilonâ€Sarcoglycan (SGCE) Gene Phenotypic Signature in Myoclonusâ€Dystonia: A Reappraisal of Genetic Testing Criteria. Movement Disorders, 2013, 28, 787-794.	3.9	31
125	Twenty years on: Myoclonusâ€dystonia and εâ€sarcoglycan â€" neurodevelopment, channel, and signaling dysfunction. Movement Disorders, 2019, 34, 1588-1601.	3.9	31
126	Role of the dopamine D5 receptor (DRD5) as a susceptibility gene for cervical dystonia. Journal of Neurology, Neurosurgery and Psychiatry, 2003, 74, 665-666.	1.9	30

#	Article	IF	CITATIONS
127	Populationâ€specific frequencies for <i>LRRK2</i> susceptibility variants in the genetic epidemiology of Parkinson's disease (GEOâ€PD) consortium. Movement Disorders, 2013, 28, 1740-1744.	3.9	30
128	Oral-facial-digital syndrome type VI: is C5orf42 really the major gene?. Human Genetics, 2015, 134, 123-126.	3.8	30
129	Alphaâ€synuclein gene duplication: Marked intrafamilial variability in two novel pedigrees. Movement Disorders, 2013, 28, 813-817.	3.9	29
130	SERCA1 protein expression in muscle of patients with Brody disease and Brody syndrome and in cultured human muscle fibers. Molecular Genetics and Metabolism, 2013, 110, 162-169.	1.1	29
131	Italian family with cranial cervical dystonia: Clinical and genetic study. Movement Disorders, 1999, 14, 820-825.	3.9	28
132	Frequency and phenotypes of LRRK2 G2019S mutation in Italian patients with Parkinson's disease. Movement Disorders, 2006, 21, 1232-1235.	3.9	28
133	Unusual familial presentation of epsilonâ€sarcoglycan gene mutation with falls and writer's cramp. Movement Disorders, 2008, 23, 1913-1915.	3.9	27
134	Genetic Issues in the Diagnosis of Dystonias. Frontiers in Neurology, 2013, 4, 34.	2.4	27
135	Altered <i>PLP1 < /i> splicing causes hypomyelination of early myelinating structures. Annals of Clinical and Translational Neurology, 2015, 2, 648-661.</i>	3.7	27
136	Protracted late infantile ceroid lipofuscinosis due to TPP1 mutations: Clinical, molecular and biochemical characterization in three sibs. Journal of the Neurological Sciences, 2015, 356, 65-71.	0.6	27
137	A Nonsense Mutation in the Human Homolog of Drosophila rogdi Causes Kohlschutter–Tonz Syndrome. American Journal of Human Genetics, 2012, 90, 708-714.	6.2	26
138	Age and sex prevalence estimate of Joubert syndrome in Italy. Neurology, 2020, 94, e797-e801.	1.1	26
139	Late onset sporadic Parkinson's disease caused by <i>PINK1</i> mutations: Clinical and functional study. Movement Disorders, 2008, 23, 881-885.	3.9	25
140	The syndrome of deafnessâ€dystonia: Clinical and genetic heterogeneity. Movement Disorders, 2013, 28, 795-803.	3.9	25
141	Candidate genes for Parkinson disease: Lessons from pathogenesis. Clinica Chimica Acta, 2015, 449, 68-76.	1.1	25
142	Infantile and childhood onset <i>><scp>PLA</scp>2G6</i> \$\frac{1}{2}\$\$ associated neurodegeneration in a large North African cohort. European Journal of Neurology, 2015, 22, 178-186.	3.3	25
143	AMBRA1 regulates mitophagy by interacting with ATAD3A and promoting PINK1 stability. Autophagy, 2022, 18, 1752-1762.	9.1	25
144	Genome-wide Association and Meta-analysis of Age at Onset in Parkinson Disease. Neurology, 2022, 99, .	1.1	25

#	Article	IF	Citations
145	Expression profiling in peripheral blood reveals signature for penetrance in DYT1 dystonia. Neurobiology of Disease, 2010, 38, 192-200.	4.4	24
146	A novel mutation in <i><scp>NDUFB11</scp></i> unveils a new clinical phenotype associated with lactic acidosis and sideroblastic anemia. Clinical Genetics, 2017, 91, 441-447.	2.0	24
147	Identification of a novel primary torsion dystonia locus (DYT13) on chromosome 1p36 in an Italian family with cranial-cervical or upper limb onset. Neurological Sciences, 2001, 22, 95-96.	1.9	23
148	Novel Italian family supports clinical and genetic heterogeneity of primary adult-onset torsion dystonia. Movement Disorders, 2002, 17, 392-397.	3.9	23
149	Cohort study of prevalence and phenomenology of tremor in dementia with Lewy bodies. Journal of Neurology, 2013, 260, 1731-1742.	3.6	23
150	Conventional magnetic resonance imaging and diffusion tensor imaging studies in children with novel GPR56 mutations: further delineation of a cobblestone-like phenotype. Neurogenetics, 2013, 14, 77-83.	1.4	23
151	Joubert syndrome with bilateral polymicrogyria: Clinical and neuropathological findings in two brothers. American Journal of Medical Genetics, Part A, 2009, 149A, 1511-1515.	1.2	22
152	FGF17, a gene involved in cerebellar development, is downregulated in a patient with Dandy–Walker malformation carrying a de novo 8p deletion. Neurogenetics, 2011, 12, 241-245.	1.4	22
153	Cognitive, adaptive, and behavioral features in Joubert syndrome. American Journal of Medical Genetics, Part A, 2016, 170, 3115-3124.	1.2	22
154	Novel mutations in the ciliopathy-associated gene CPLANE1 (C5orf42) cause OFD syndrome type VI rather than Joubert syndrome. European Journal of Medical Genetics, 2018, 61, 585-595.	1.3	22
155	The spectrum of brainstem malformations associated to mutations of the tubulin genes family: MRI and DTI analysis. European Radiology, 2019, 29, 770-782.	4.5	22
156	Profiling the Biochemical Signature of GBAâ∈Related Parkinson's Disease in Peripheral Blood Mononuclear Cells. Movement Disorders, 2021, 36, 1267-1272.	3.9	22
157	Suprascapular nerve entrapment: Neurophysiological localization in 6 cases. Acta Orthopaedica, 1996, 67, 482-484.	1.4	21
158	Low-Rate Repetitive Nerve Stimulation Protocol in an Italian Cohort of Patients Affected by Recessive Myotonia Congenita. Journal of Clinical Neurophysiology, 2011, 28, 39-44.	1.7	21
159	Development of SaraHome: A novel, well-accepted, technology-based assessment tool for patients with ataxia. Computer Methods and Programs in Biomedicine, 2020, 188, 105257.	4.7	21
160	Heterozygous <i>KIF1A</i> variants underlie a wide spectrum of neurodevelopmental and neurodegenerative disorders. Journal of Medical Genetics, 2021, 58, 475-483.	3.2	21
161	GBA Mutations Influence the Release and Pathological Effects of Small Extracellular Vesicles from Fibroblasts of Patients with Parkinson's Disease. International Journal of Molecular Sciences, 2021, 22, 2215.	4.1	21
162	Mendelian Randomisation Study of Smoking, Alcohol, and Coffee Drinking in Relation to Parkinson's Disease. Journal of Parkinson's Disease, 2022, 12, 267-282.	2.8	21

#	Article	IF	CITATIONS
163	Multiplex ligationâ€dependent probe amplification assay for simultaneous detection of Parkinson's disease gene rearrangements. Movement Disorders, 2007, 22, 2274-2278.	3.9	20
164	Impaired body movement representation in DYT1 mutation carriers. Clinical Neurophysiology, 2008, 119, 1864-1869.	1.5	20
165	Clinical utility gene card for: Joubert Syndrome - update 2013. European Journal of Human Genetics, 2013, 21, 1187-1187.	2.8	20
166	Wholeâ€exome sequencing for variant discovery in blepharospasm. Molecular Genetics & Denomic Medicine, 2018, 6, 601-626.	1.2	20
167	Computerized gait analysis of Botulinum Toxin treatment in children with cerebral palsy. Disability and Rehabilitation, 2007, 29, 659-664.	1.8	19
168	<i>GIGYF2</i> variants are not associated with Parkinson's disease in Italy. Movement Disorders, 2009, 24, 1867-1868.	3.9	19
169	Dandy-Walker malformation and Wisconsin syndrome: novel cases add further insight into the genotype-phenotype correlations of 3q23q25 deletions. Orphanet Journal of Rare Diseases, 2013, 8, 75.	2.7	19
170	<i>SUFU</i> haploinsufficiency causes a recognisable neurodevelopmental phenotype at the mild end of the Joubert syndrome spectrum. Journal of Medical Genetics, 2022, 59, 888-894.	3.2	19
171	Autosomal dominant Brody disease cosegregates with a chromosomal (2;7)(p11.2;p12.1) translocation in an Italian family. European Journal of Human Genetics, 2004, 12, 579-583.	2.8	17
172	Opioid binding in DYT1 primary torsion dystonia: An11C-diprenorphine PET study. Movement Disorders, 2004, 19, 1498-1503.	3.9	17
173	Brainâ€derived neurotrophic factor and risk for primary adultâ€onset cranialâ€cervical dystonia. European Journal of Neurology, 2009, 16, 949-952.	3.3	17
174	Migraine with aura as the predominant phenotype in a family with a PRRT2 mutation. Journal of Neurology, 2013, 260, 656-660.	3.6	17
175	Kohlschutter-Tonz Syndrome: Clinical and Genetic Insights Gained From 16 Cases Deriving From a Close-Knit Village inANorthern Israel. Pediatric Neurology, 2014, 50, 421-426.	2.1	17
176	A novel PMCA3 mutation in an ataxic patient with hypomorphic phosphomannomutase 2 (PMM2) heterozygote mutations: Biochemical characterization of the pump defect. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 3303-3312.	3.8	17
177	Between SCA5 and SCAR14: delineation of the SPTBN2 p.R480W-associated phenotype. European Journal of Human Genetics, 2018, 26, 928-929.	2.8	17
178	Mosaic caveolin-3 expression in acquired rippling muscle disease without evidence of myasthenia gravis or acetylcholine receptor autoantibodies. Neuromuscular Disorders, 2011, 21, 194-203.	0.6	16
179	A novel IRF2BPL truncating variant is associated with endolysosomal storage. Molecular Biology Reports, 2020, 47, 711-714.	2.3	16
180	Genome-Wide DNA Methylation Analysis of a Cohort of 41 Patients Affected by Oculo-Auriculo-Vertebral Spectrum (OAVS). International Journal of Molecular Sciences, 2021, 22, 1190.	4.1	16

#	Article	IF	CITATIONS
181	Cognitive rehabilitation in a child with Joubert Syndrome: Developmental trends and adaptive changes in a single case report. Research in Developmental Disabilities, 2015, 47, 375-384.	2.2	15
182	Anterior Mesencephalic Cap Dysplasia: Novel Brain Stem Malformative Features Associated with Joubert Syndrome. American Journal of Neuroradiology, 2017, 38, 2385-2390.	2.4	15
183	Impaired urinary concentration ability is a sensitive predictor of renal disease progression in Joubert syndrome. Nephrology Dialysis Transplantation, 2020, 35, 1195-1202.	0.7	15
184	Dairy Intake and Parkinson's Disease: A Mendelian Randomization Study. Movement Disorders, 2022, 37, 857-864.	3.9	15
185	A novel family with an unusual early-onset generalized dystonia. Movement Disorders, 2005, 20, 81-86.	3.9	14
186	Recurrent and fatal akinetic crisis in geneticâ€mitochondrial parkinsonisms. European Journal of Neurology, 2014, 21, 1242-1246.	3.3	14
187	Progressive Supranuclear Palsy–Like Phenotype in a <i>GBA</i> E326K Mutation Carrier. Movement Disorders Clinical Practice, 2017, 4, 444-446.	1.5	14
188	A rare case of cerebellar agenesis: a probabilistic Constrained Spherical Deconvolution tractographic study. Brain Imaging and Behavior, 2016, 10, 158-167.	2.1	13
189	DYT2 screening in early-onset isolated dystonia. European Journal of Paediatric Neurology, 2017, 21, 269-271.	1.6	13
190	Refining the mutational spectrum and gene–phenotype correlates in pontocerebellar hypoplasia: results of a multicentric study. Journal of Medical Genetics, 2022, 59, 399-409.	3.2	13
191	Primary Focal Hyperhidrosis in a New Family Not Linked to Known Loci. Dermatology, 2011, 223, 335-342.	2.1	12
192	Agenesis of the putamen and globus pallidus caused by recessive mutations in the homeobox gene GSX2. Brain, 2019, 142, 2965-2978.	7.6	12
193	"Fork and bracket―syndrome expands the spectrum of <i>SBF1</i> -related sensory motor polyneuropathies. Neurology: Genetics, 2016, 2, e61.	1.9	11
194	Mechanisms of neurodegeneration in Parkinson's disease: keep neurons in the PINK1. Mechanisms of Ageing and Development, 2020, 189, 111277.	4.6	11
195	PINK1 Protects against Staurosporine-Induced Apoptosis by Interacting with Beclin1 and Impairing Its Pro-Apoptotic Cleavage. Cells, 2022, 11, 678.	4.1	11
196	Genetic testing for paediatric neurological disorders. Lancet Neurology, The, 2008, 7, 1113-1126.	10.2	10
197	Successful subthalamic stimulation, but levodopa-induced dystonia, in a genetic Parkinson's disease. Neurological Sciences, 2013, 34, 383-386.	1.9	10
198	Xâ€Linked Parkinsonism: Phenotypic and Genetic Heterogeneity. Movement Disorders, 2021, 36, 1511-1525.	3.9	10

#	Article	IF	Citations
199	Brain Connectivity Changes in Autosomal Recessive Parkinson Disease: A Model for the Sporadic Form. PLoS ONE, 2016, 11, e0163980.	2.5	10
200	<scp><i>TWNK</i></scp> in Parkinson's Disease: A Movement Disorder and Mitochondrial Disease Center Perspective Study. Movement Disorders, 2022, 37, 1938-1943.	3.9	10
201	Very mild features of dysequilibrium syndrome associated with a novel VLDLR missense mutation. Neurogenetics, 2016, 17, 191-195.	1.4	9
202	Solving Mendelian Mysteries: The Non-coding Genome May Hold the Key. Cell, 2018, 172, 889-891.	28.9	9
203	Clinical variability at the mild end of <i>BRAT1</i> â€related spectrum: Evidence from two families with genotype–phenotype discordance. Human Mutation, 2022, 43, 67-73.	2.5	9
204	A solid quality-control analysis of AB SOLiD short-read sequencing data. Briefings in Bioinformatics, 2013, 14, 684-695.	6.5	8
205	Preexisting Bipolar Disorder Influences the Subsequent Phenotype of Parkinson's Disease. Movement Disorders, 2021, 36, 2840-2852.	3.9	8
206	Social prediction in pediatric patients with congenital, non-progressive malformations of the cerebellum: From deficits in predicting movements to rehabilitation in virtual reality. Cortex, 2021, 144, 82-98.	2.4	8
207	PINK1 and Parkin: The odd couple. Neuroscience Research, 2020, 159, 25-33.	1.9	8
208	Heterozygous mutations in genes causing parkinsonism: monogenic disorders go complex. Lancet Neurology, The, 2007, 6, 576-578.	10.2	7
209	Macular staphyloma in patients affected by Joubert syndrome with retinal dystrophy: a new finding detected by SD-OCT. Documenta Ophthalmologica, 2018, 137, 25-36.	2.2	7
210	CASK related disorder: Epilepsy and developmental outcome. European Journal of Paediatric Neurology, 2021, 31, 61-69.	1.6	7
211	<i>ARF1</i> haploinsufficiency causes periventricular nodular heterotopia with variable clinical expressivity. Journal of Medical Genetics, 2022, 59, 781-784.	3.2	7
212	Get Your Molar Tooth Right: Joubert Syndrome Misdiagnosis Unmasked by Whole-Exome Sequencing. Cerebellum, 2022, 21, 1144-1150.	2.5	7
213	Generation of the human induced pluripotent stem cell (hiPSC) line PSMi003-A from a patient affected by an autosomal recessive form of Long QT Syndrome type 1. Stem Cell Research, 2018, 29, 170-173.	0.7	6
214	<scp><i>APP</i></scp> â€Related Corticobasal Syndrome: Expanding the List of Corticobasal Degeneration Look Alikes. Movement Disorders Clinical Practice, 2020, 7, 849-851.	1.5	6
215	Diagnostic Yield and Cost-Effectiveness of "Dynamic―Exome Analysis in Epilepsy with Neurodevelopmental Disorders: A Tertiary-Center Experience in Northern Italy. Diagnostics, 2021, 11, 948.	2.6	6
216	Advances in the genetics of primary torsion dystonia. F1000 Biology Reports, 2010, 2, .	4.0	6

#	Article	IF	CITATIONS
217	Adult onset familiar dystonia-plus syndrome: A novel presentation of IRF2BPL-associated neurodegeneration. Parkinsonism and Related Disorders, 2022, 94, 22-24.	2.2	6
218	Early-onset head titubation in a child with Poretti-Boltshauser syndrome. Neurology, 2017, 88, 1478-1479.	1.1	5
219	Electroretinographic Assessment in Joubert Syndrome: A Suggested Objective Method to Evaluate the Effectiveness of Future Targeted Treatment. Advances in Therapy, 2020, 37, 3827-3838.	2.9	5
220	KCTD17-related myoclonus-dystonia syndrome: clinical and electrophysiological findings of a patient with atypical late onset. Parkinsonism and Related Disorders, 2020, 78, 129-133.	2.2	5
221	Clinical and Molecular Characterization of a Novel Progranulin Deletion Associated with Different Phenotypes. Journal of Alzheimer's Disease, 2020, 76, 341-347.	2.6	5
222	Patient-derived cellular models of primary ciliopathies. Journal of Medical Genetics, 2022, , jmedgenet-2021-108315.	3.2	5
223	An Integrated Phenotypic and Genotypic Approach Reveals a Highâ€Risk Subtype Association for <scp><i>EBF3</i></scp> Missense Variants Affecting the Zinc Finger Domain. Annals of Neurology, 2022, 92, 138-153.	5.3	5
224	PINK1: one protein, multiple neuroprotective functions. Future Neurology, 2009, 4, 575-590.	0.5	4
225	The ciliary proteins Meckelin and Jouberin are required for retinoic acid-dependent neural differentiation of mouse embryonic stem cells. Differentiation, 2014, 87, 134-146.	1.9	4
226	Generation of the human induced pluripotent stem cell (hiPSC) line PSMi006-A from a patient affected by an autosomal recessive form of long QT syndrome type 1. Stem Cell Research, 2020, 42, 101658.	0.7	4
227	Parkin Deficiency Appears Not to Be Associated with Cardiac Damage in Parkinson's Disease. Movement Disorders, 2021, 36, 271-273.	3.9	4
228	Superior Cerebellar Atrophy: An Imaging Clue to Diagnose ITPR1-Related Disorders. International Journal of Molecular Sciences, 2022, 23, 6723.	4.1	4
229	The Interaction between <scp><i>HLAâ€DRB1</i></scp> and Smoking in Parkinson's Disease Revisited. Movement Disorders, 2022, 37, 1929-1937.	3.9	4
230	"Gluing" phenotypes together: The case of GLUT1. Neurology, 2011, 77, 934-935.	1.1	3
231	Lack of sequence variations in THAP1 gene and THAP1-binding sites in TOR1A promoter of DYT1 patients. Movement Disorders, 2012, 27, 917-917.	3.9	3
232	The multiple faces of TOR1A: different inheritance, different phenotype. Brain, 2017, 140, 2764-2767.	7.6	3
233	Generation of the human induced pluripotent stem cell (hiPSC) line PSMi002-A from a patient affected by the Jervell and Lange-Nielsen syndrome and carrier of two compound heterozygous mutations on the KCNQ1 gene. Stem Cell Research, 2018, 29, 157-161.	0.7	3
234	Production and characterization of human induced pluripotent stem cells (iPSCs) from Joubert Syndrome: CSSi001-A (2850). Stem Cell Research, 2018, 27, 74-77.	0.7	3

#	Article	IF	CITATIONS
235	Genetics of cerebellar disorders. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 154, 267-286.	1.8	3
236	Generation of two human induced pluripotent stem cell (hiPSC) lines from a long QT syndrome South African founder population. Stem Cell Research, 2019, 39, 101510.	0.7	3
237	Production and characterization of human induced pluripotent stem cells (iPSC) CSSi007-A (4383) from Joubert Syndrome. Stem Cell Research, 2019, 38, 101480.	0.7	3
238	<i>LRP10</i> : A novel disease gene bridging Parkinson's disease and dementia with Lewy body. Movement Disorders, 2019, 34, 47-47.	3.9	3
239	Alazami syndrome: Phenotypic expansion and clinical resemblance to Smith–Lemli–Opitz syndrome. American Journal of Medical Genetics, Part A, 2020, 182, 2722-2726.	1.2	3
240	Generation of induced pluripotent stem cell (iPSC) lines from a Joubert syndrome patient with compound heterozygous mutations in C5orf42 gene. Stem Cell Research, 2020, 49, 102007.	0.7	3
241	Movement Disorders in Genetic Pediatric Ataxias. Movement Disorders Clinical Practice, 2020, 7, 383-393.	1.5	3
242	Posterior Cortical Atrophy phenotype in a GBA N370S mutation carrier: a case report. BMC Neurology, 2021, 21, 17.	1.8	3
243	Novel unconventional variants expand the allelic spectrum of OPHN1 gene. American Journal of Medical Genetics, Part A, 2021, 185, 1575-1581.	1.2	3
244	Spectrum of Disease Severity in Nonsyndromic Patients With Mutations in the CEP290 Gene: A Multicentric Longitudinal Study., 2021, 62, 1.		3
245	LIPAD (LRRK2/Luebeck International Parkinson's Disease) Study Protocol: Deep Phenotyping of an International Genetic Cohort. Frontiers in Neurology, 2021, 12, 710572.	2.4	3
246	DYT13, a novel primary torsion dystonia locus, maps to chromosome 1p36.13–36.32 in an Italian family with cranialâ€cervical or upper limb onset. Annals of Neurology, 2001, 49, 362-366.	5.3	3
247	Biallelic mutations in PSMC3IP are associated with secondary amenorrhea: expanding the spectrum of prematureÂovarian insufficiency. Journal of Assisted Reproduction and Genetics, 2022, 39, 1177-1181.	2.5	3
248	Low-rate nerve stimulation during regional ischemia in the diagnosis of muscle glycogenosis. Muscle and Nerve, 1996, 19, 1523-1529.	2.2	2
249	A Novel Locus for Autosomal Dominant Cone and Cone–Rod Dystrophies Maps to the 6p Gene Cluster of Retinal Dystrophies. , 2005, 46, 3539.		2
250	Elevated aspartate aminotransferase and lactate dehydrogenase levels are a constant finding in <i><scp>PLA</scp>2G6</i> â€associated neurodegeneration. European Journal of Neurology, 2016, 23, e24-5.	3.3	2
251	KMT2B: A new twist in dystonia genetics. Movement Disorders, 2017, 32, 529-529.	3.9	2
252	Generation of the human induced pluripotent stem cell (hiPSC) line PSMi007-A from a Long QT Syndrome type 1 patient carrier of two common variants in the NOS1AP gene. Stem Cell Research, 2019, 36, 101416.	0.7	2

#	Article	IF	CITATIONS
253	Generation of the human induced pluripotent stem cell (hiPSC) line PSMi004-A from a carrier of the KCNQ1-R594Q mutation. Stem Cell Research, 2019, 37, 101431.	0.7	2
254	Awareness of rare and genetic neurological diseases among italian neurologist. A national survey. Neurological Sciences, 2020, 41, 1567-1570.	1.9	2
255	Genetic characterization of a cohort with familial parkinsonism and cognitive-behavioral syndrome: A Next Generation Sequencing study. Parkinsonism and Related Disorders, 2021, 84, 82-90.	2.2	2
256	Establishment of three Joubert syndrome-derived induced pluripotent stem cell (iPSC) lines harbouring compound heterozygous mutations in CC2D2A gene. Stem Cell Research, 2021, 54, 102430.	0.7	2
257	Prevalence and Phenotypic Spectrum of PINK1 Mutations in Parkinson's Disease. European Neurological Review, 2009, 4, 40.	0.5	2
258	Atypical childhood-onset neuroaxonal dystrophy in an Indian girl. Journal of Pediatric Neurosciences, 2019, 14, 90.	0.3	2
259	Letters to the editor. Muscle and Nerve, 1996, 19, 675-681.	2.2	1
260	The Expanding Joubert Spectrum. Neuroradiology Journal, 2007, 20, 421-425.	1.2	1
261	PINK1 (PARK6) and Parkinson's Disease. Blue Books of Neurology, 2010, 34, 66-82.	0.1	1
262	Novel genes and novel pathogenetic mechanisms in adultâ€onset primary dystonia. Movement Disorders, 2013, 28, 440-440.	3.9	1
263	Genetic Paradoxes in an Italian Family with <i><scp>PARK</scp>2</i> Multiexon Duplication. Movement Disorders Clinical Practice, 2017, 4, 889-892.	1.5	1
264	Prenatal findings in oralâ€facialâ€digital syndrome type VI: Report of three cases and literature review. Prenatal Diagnosis, 2019, 39, 652-655.	2.3	1
265	Generation of the human induced pluripotent stem cell (hiPSC) line PSMi005-A from a patient carrying the KCNQ1-R190W mutation. Stem Cell Research, 2019, 37, 101437.	0.7	1
266	Phenotypic Definition and Genotype-Phenotype Correlates in PMPCA-Related Disease. Applied Sciences (Switzerland), 2021, 11, 748.	2.5	1
267	Histologic heterogeneity and syndromic associations of non-ampullary duodenal polyps and superficial mucosal lesions. Digestive and Liver Disease, 2021, 53, 1647-1654.	0.9	1
268	Challenges and resources in adult life with Joubert syndrome: issues from an international classification of functioning (ICF) perspective. Disability and Rehabilitation, 2021, , 1-8.	1.8	1
269	Clinical utility gene card for: Joubert syndrome. European Journal of Human Genetics, 2011, 19, 1017-1017.	2.8	0
270	Genetics and Molecular Biology of Parkinson Disease. , 2015, , 243-257.		0

#	Article	IF	CITATIONS
271	Intrafamilial variability in a polish family harbouring a frameshift THAP1 mutation. Journal of the Neurological Sciences, 2018, 388, 158.	0.6	0
272	Toward the elimination of bias in Pediatric Research. Pediatric Research, 2019, 86, 680-681.	2.3	0
273	Mitochondria and Parkinson's disease: a complex (III) liaison. Brain, 2020, 143, 3175-3178.	7.6	0
274	Visual Evoked Potentials in Joubert Syndrome: A Suggested Useful Method for Evaluating Future Approaches Targeted to Improve Visual Pathways' Function. Advances in Therapy, 2021, 38, 278-289.	2.9	0
275	A Clinical-Based Diagnostic Approach to Cerebellar Atrophy in Children. Applied Sciences (Switzerland), 2021, 11, 2333.	2.5	0