
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2681581/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Real-Time Measurements of Intracellular cAMP Gradients Using FRET-Based cAMP Nanorulers. Methods in Molecular Biology, 2022, 2483, 1-13.	0.9	3
2	Unraveling the hidden temporal range of fast β2-adrenergic receptor mobility by time-resolved fluorescence. Communications Biology, 2022, 5, 176.	4.4	3
3	Proteolytic Cleavage of the Extracellular Domain Affects Signaling of Parathyroid Hormone 1 Receptor. Frontiers in Endocrinology, 2022, 13, 839351.	3.5	6
4	Receptor-associated independent cAMP nanodomains mediate spatiotemporal specificity of GPCR signaling. Cell, 2022, 185, 1130-1142.e11.	28.9	85
5	Determination of G-protein–coupled receptor oligomerization by molecular brightness analyses in single cells. Nature Protocols, 2021, 16, 1419-1451.	12.0	25
6	Structural and Functional Characterization of Allatostatin Receptor Type-C of <i>Thaumetopoea pityocampa</i> , a Potential Target for Next-Generation Pest Control Agents. Journal of Chemical Information and Modeling, 2021, 61, 715-728.	5.4	4
7	Bioluminescence in G Protein-Coupled Receptors Drug Screening Using Nanoluciferase and Halo-Tag Technology. Methods in Molecular Biology, 2021, 2268, 137-147.	0.9	6
8	Quantitative spectroscopy of single molecule interaction times. Optics Letters, 2021, 46, 1538.	3.3	2
9	Differences in interactions between transmembrane domains tune the activation of metabotropic glutamate receptors. ELife, 2021, 10, .	6.0	18
10	Visualization of β-adrenergic receptor dynamics and differential localization in cardiomyocytes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	30
11	A Versatile Sub-Nanomolar Fluorescent Ligand Enables NanoBRET Binding Studies and Single-Molecule Microscopy at the Histamine H ₃ Receptor. Journal of Medicinal Chemistry, 2021, 64, 11695-11708.	6.4	26
12	Dual-Color Fluorescence Cross-Correlation Spectroscopy to Study Protein-Protein Interaction and Protein Dynamics in Live Cells. Journal of Visualized Experiments, 2021, , .	0.3	0
13	Linescan microscopy data to extract diffusion coefficient of a fluorescent species using a commercial confocal microscope. Data in Brief, 2020, 29, 105063.	1.0	8
14	Optical Mapping of cAMP Signaling at the Nanometer Scale. Cell, 2020, 182, 1519-1530.e17.	28.9	125
15	Establishing a sensitive fluorescence-based quantification method for cyclic nucleotides. BMC Biotechnology, 2020, 20, 47.	3.3	1
16	Advanced fluorescence microscopy reveals disruption of dynamic CXCR4 dimerization by subpocket-specific inverse agonists. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29144-29154.	7.1	42
17	Kinetic Analysis of the Early Signaling Steps of the Human Chemokine Receptor CXCR4. Molecular Pharmacology, 2020, 98, 72-87.	2.3	13
18	Development of a Conformational Histamine H ₃ Receptor Biosensor for the Synchronous Screening of Agonists and Inverse Agonists. ACS Sensors, 2020, 5, 1734-1742.	7.8	27

#	Article	IF	CITATIONS
19	Single-molecule analysis reveals agonist-specific dimer formation of µ-opioid receptors. Nature Chemical Biology, 2020, 16, 946-954.	8.0	86
20	Differential Signaling Profiles of MC4R Mutations with Three Different Ligands. International Journal of Molecular Sciences, 2020, 21, 1224.	4.1	24
21	Spatial heterogeneity in molecular brightness. Nature Methods, 2020, 17, 273-275.	19.0	7
22	Pharmacological Characterization of the Stick Insect Carausius morosus Allatostatin-C Receptor with Its Endogenous Agonist. ACS Omega, 2020, 5, 32183-32194.	3.5	2
23	Unmasking features of the autoâ€epitope essential for β ₁ â€edrenoceptor activation by autoantibodies in chronic heart failure. ESC Heart Failure, 2020, 7, 1830-1841.	3.1	8
24	Efficient Prediction of the Effect of Mutations on the Activation Kinetics of G Protein-Coupled Receptors Using a Maximum Caliber Approach. Biophysical Journal, 2020, 118, 92a-93a.	0.5	0
25	Context-Dependent Signaling of CXC Chemokine Receptor 4 and Atypical Chemokine Receptor 3. Molecular Pharmacology, 2019, 96, 778-793.	2.3	30
26	Quantitative Single-Residue Bioorthogonal Labeling of G Protein-Coupled Receptors in Live Cells. ACS Chemical Biology, 2019, 14, 1141-1149.	3.4	33
27	Stepwise activation of a class C GPCR begins with millisecond dimer rearrangement. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10150-10155.	7.1	46
28	Structure–Activity Relationships and Computational Investigations into the Development of Potent and Balanced Dual-Acting Butyrylcholinesterase Inhibitors and Human Cannabinoid Receptor 2 Ligands with Pro-Cognitive in Vivo Profiles. Journal of Medicinal Chemistry, 2018, 61, 1646-1663.	6.4	50
29	Related GPCRs couple differently to G _s : preassociation between G protein and 5â€HT ₇ serotonin receptor reveals movement of Gα _s upon receptor activation. FASEB Journal, 2018, 32, 1059-1069.	0.5	27
30	Increased fear learning, spatial learning as well as neophobia in Rgs2 ^{â^'/â^'} mice. Genes, Brain and Behavior, 2018, 17, e12420.	2.2	17
31	Cyclopeptide COR-1 to treat beta1-adrenergic receptor antibody-induced heart failure. PLoS ONE, 2018, 13, e0201160.	2.5	3
32	A functional genetic variation of SLC6A2 repressor hsa-miR-579-3p upregulates sympathetic noradrenergic processes of fear and anxiety. Translational Psychiatry, 2018, 8, 226.	4.8	13
33	Bioluminescence resonance energy transfer-based biosensors allow monitoring of ligand- and transducer-mediated GPCR conformational changes. Communications Biology, 2018, 1, 106.	4.4	26
34	Molecular details of dimerization kinetics reveal negligible populations of transient µ-opioid receptor homodimers at physiological concentrations. Scientific Reports, 2018, 8, 7705.	3.3	36
35	All-optical microscope autofocus based on an electrically tunable lens and a totally internally reflected IR laser. Optics Express, 2018, 26, 2359.	3.4	43
36	A universal bioluminescence resonance energy transfer sensor design enables high-sensitivity screening of GPCR activation dynamics. Communications Biology, 2018, 1, 105.	4.4	36

MARTIN J LOHSE

#	Article	IF	CITATIONS
37	Spatiotemporal signalling in G-protein coupled receptors. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, SY85-3.	0.0	0
38	Ligand-Specific Restriction of Extracellular Conformational Dynamics Constrains Signaling of the M ₂ Muscarinic Receptor. ACS Chemical Biology, 2017, 12, 1743-1748.	3.4	23
39	Single-molecule imaging reveals receptor–G protein interactions at cell surface hot spots. Nature, 2017, 550, 543-547.	27.8	258
40	Internalized TSH receptors en route to the TGN induce local Gs-protein signaling and gene transcription. Nature Communications, 2017, 8, 443.	12.8	140
41	Evolutionary action and structural basis of the allosteric switch controlling β2AR functional selectivity. Nature Communications, 2017, 8, 2169.	12.8	61
42	Experimental and mathematical analysis of cAMP nanodomains. PLoS ONE, 2017, 12, e0174856.	2.5	42
43	Is Signaling Specificity Encoded in Arrestin Conformation?. , 2017, , 235-253.		0
44	Beyond an â€~On-Off' Activation Model of G-Protein-Coupled Receptors. Biophysical Journal, 2016, 110, 640a.	0.5	0
45	Persistent cAMP Signaling by Internalized LH Receptors in Ovarian Follicles. Endocrinology, 2016, 2016, 63-71.	2.8	73
46	Ligand Binding Ensembles Determine Graded Agonist Efficacies at a G Protein-coupled Receptor. Journal of Biological Chemistry, 2016, 291, 16375-16389.	3.4	67
47	cAMP Signals in Drosophila Motor Neurons Are Confined to Single Synaptic Boutons. Cell Reports, 2016, 17, 1238-1246.	6.4	55
48	β-Arrestin biosensors reveal a rapid, receptor-dependent activation/deactivation cycle. Nature, 2016, 531, 661-664.	27.8	190
49	Phospholamban pentamers attenuate PKA-dependent phosphorylation of monomers. Journal of Molecular and Cellular Cardiology, 2015, 80, 90-97.	1.9	18
50	Prolonged TSH Receptor A Subunit Immunization of Female Mice Leads to a Long-Term Model of Graves' Disease, Tachycardia, and Cardiac Hypertrophy. Endocrinology, 2015, 156, 1577-1589.	2.8	40
51	MicroRNA hsaâ€miRâ€4717â€5p regulates RGS2 and may be a risk factor for anxietyâ€related traits. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2015, 168, 296-306.	1.7	23
52	Single-Molecule Fluorescence Microscopy for the Analysis of Fast Receptor Dynamics. Methods in Molecular Biology, 2015, 1335, 53-66.	0.9	2
53	The ins and outs of adrenergic signaling. Journal of Molecular Medicine, 2015, 93, 955-962.	3.9	21
54	Exploring the Biology of G Protein–Coupled Receptors from In Vitro to In Vivo. Molecular Pharmacology, 2015, 88, 534-535.	2.3	2

#	Article	IF	CITATIONS
55	Cardiac RKIP induces a beneficial β-adrenoceptor–dependent positive inotropy. Nature Medicine, 2015, 21, 1298-1306.	30.7	67
56	Spatial and Temporal Aspects of Signaling by G-Protein–Coupled Receptors. Molecular Pharmacology, 2015, 88, 572-578.	2.3	65
57	Trafficking and Function of GPCRs in the Endosomal Compartment. Methods in Molecular Biology, 2015, 1234, 197-211.	0.9	17
58	Novel Receptor-Derived Cyclopeptides to Treat Heart Failure Caused by Anti-β1-Adrenoceptor Antibodies in a Human-Analogous Rat Model. PLoS ONE, 2015, 10, e0117589.	2.5	20
59	Novel Somatic Mutations in the Catalytic Subunit of the Protein Kinase A as a Cause of Adrenal Cushing's Syndrome: A European Multicentric Study. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E2093-E2100.	3.6	92
60	PKA catalytic subunit mutations in adrenocortical Cushing's adenoma impair association with the regulatory subunit. Nature Communications, 2014, 5, 5680.	12.8	63
61	β-Myosin Heavy Chain Variant Val606Met Causes Very Mild Hypertrophic Cardiomyopathy in Mice, but Exacerbates HCM Phenotypes in Mice Carrying Other HCM Mutations. Circulation Research, 2014, 115, 227-237.	4.5	38
62	Kinetics and mechanism of G protein-coupled receptor activation. Current Opinion in Cell Biology, 2014, 27, 87-93.	5.4	51
63	Crosstalk between Sentinel and Helper Macrophages Permits Neutrophil Migration into Infected Uroepithelium. Cell, 2014, 156, 456-468.	28.9	203
64	Arrestin Interactions with G Protein-Coupled Receptors. Handbook of Experimental Pharmacology, 2014, 219, 15-56.	1.8	62
65	G Protein–Coupled Receptor Oligomerization Revisited: Functional and Pharmacological Perspectives. Pharmacological Reviews, 2014, 66, 413-434.	16.0	497
66	Pilot the pulse: controlling the multiplicity of receptor dynamics. Trends in Pharmacological Sciences, 2014, 35, 630-638.	8.7	34
67	Constitutive Activation of PKA Catalytic Subunit in Adrenal Cushing's Syndrome. New England Journal of Medicine, 2014, 370, 1019-1028.	27.0	355
68	High-resolution Spatiotemporal Analysis of Receptor Dynamics by Single-molecule Fluorescence Microscopy. Journal of Visualized Experiments, 2014, , e51784.	0.3	9
69	Role of Membrane Microdomains in Compartmentation of cAMP Signaling. PLoS ONE, 2014, 9, e95835.	2.5	75
70	Abstract LB-182: Constitutive activation of PRKACA in adrenal Cushing's syndrome. , 2014, , .		0
71	Corrigendum to â€~Administration of the cyclic peptide COR-1 in humans (phase I study):ex vivomeasurements of anti-b1-adrenergic receptor antibody neutralization and of immune parameters' [Eur J Heart Fail 2012;14:1230-1239]. European Journal of Heart Failure, 2013, 15, 478-478.	7.1	1
72	Gene Amplification and Functional Diversification of Melanocortin 4 Receptor at an Extremely Polymorphic Locus Controlling Sexual Maturation in the Platyfish. Genetics, 2013, 195, 1337-1352.	2.9	22

#	Article	IF	CITATIONS
73	Single-molecule analysis of fluorescently labeled G-protein–coupled receptors reveals complexes with distinct dynamics and organization. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 743-748.	7.1	394
74	Receptor signals come in waves. Nature, 2013, 495, 457-458.	27.8	52
75	Regulation of CAMP Compartmentation by Membrane Microdomains. Biophysical Journal, 2013, 104, 612a.	0.5	0
76	Time-resolved fluorescence ligand binding for G protein–coupled receptors. Nature Protocols, 2013, 8, 1307-1320.	12.0	67
77	Interference with ERK ^{Thr188} phosphorylation impairs pathological but not physiological cardiac hypertrophy. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7440-7445.	7.1	79
78	Multimodal function of the sweet taste receptor expressed in pancreatic β-cells: generation of diverse patterns of intracellular signals by sweet agonists. Endocrine Journal, 2013, 60, 1191-1206.	1.6	74
79	The Guanine Nucleotide Exchange Factor Vav2 Is a Negative Regulator of Parathyroid Hormone Receptor/Gq Signaling. Molecular Pharmacology, 2012, 82, 217-225.	2.3	3
80	Administration of the cyclic peptide COR-1 in humans (phase I study): ex vivo measurements of anti-β1 -adrenergic receptor antibody neutralization and of immune parameters. European Journal of Heart Failure, 2012, 14, 1230-1239.	7.1	47
81	Persistent cAMP signaling by internalized TSH receptors occurs in thyroid but not in HEK293 cells. FASEB Journal, 2012, 26, 2043-2048.	0.5	53
82	Nonequilibrium Activation of a G-Protein-Coupled Receptor. Molecular Pharmacology, 2012, 81, 770-777.	2.3	13
83	Detection of Anti–β1-AR Autoantibodies in Heart Failure by a Cell-Based Competition ELISA. Circulation Research, 2012, 111, 675-684.	4.5	36
84	Sequential Inter- and Intrasubunit Rearrangements During Activation of Dimeric Metabotropic Glutamate Receptor 1. Science Signaling, 2012, 5, ra59.	3.6	82
85	Comparison of the Activation Kinetics of the M ₃ Acetylcholine Receptor and a Constitutively Active Mutant Receptor in Living Cells. Molecular Pharmacology, 2012, 82, 236-245.	2.3	30
86	Antibodies to cardiac receptors. Herz, 2012, 37, 843-848.	1.1	6
87	β-Adrenergic receptor stimulation causes cardiac hypertrophy via a Gβγ/Erk-dependent pathway. Cardiovascular Research, 2012, 96, 255-264.	3.8	62
88	Raf Kinase Inhibitor Protein (RKIP) Dimer Formation Controls Its Target Switch from Raf1 to G Protein-coupled Receptor Kinase (GRK) 2. Journal of Biological Chemistry, 2012, 287, 23407-23417.	3.4	59
89	Fluorescence/Bioluminescence Resonance Energy Transfer Techniques to Study G-Protein-Coupled Receptor Activation and Signaling. Pharmacological Reviews, 2012, 64, 299-336.	16.0	279
90	Rotational Diffusion of the α2a Adrenergic Receptor Revealed by FlAsH Labeling in Living Cells. Biophysical Journal, 2011, 100, 1139-1148.	0.5	23

#	Article	IF	CITATIONS
91	Sensing G protein-coupled receptor activation. Neuropharmacology, 2011, 60, 45-51.	4.1	26
92	FRET measurements of intracellular cAMP concentrations and cAMP analog permeability in intact cells. Nature Protocols, 2011, 6, 427-438.	12.0	191
93	Temporally resolved cAMP monitoring in endothelial cells uncovers a thrombinâ€induced [cAMP] elevation mediated via the Ca ²⁺ â€dependent production of prostacyclin. Journal of Physiology, 2011, 589, 181-193.	2.9	11
94	Distinct pharmacological properties of morphine metabolites at Gi-protein and β-arrestin signaling pathways activated by the human μ-opioid receptor. Biochemical Pharmacology, 2011, 81, 1248-1254.	4.4	48
95	Chapter 9. Kinetics and Mechanisms of GPCR Activation. RSC Drug Discovery Series, 2011, , 199-216.	0.3	Ο
96	FRET-based sensors for the human M1-, M3-, and M5-acetylcholine receptors. Bioorganic and Medicinal Chemistry, 2011, 19, 1048-1054.	3.0	79
97	Developing Chemical Genetic Approaches to Explore G Protein-Coupled Receptor Function: Validation of the Use of a Receptor Activated Solely by Synthetic Ligand (RASSL). Molecular Pharmacology, 2011, 80, 1033-1046.	2.3	56
98	Phosducin influences sympathetic activity and prevents stress-induced hypertension in humans and mice. Journal of Clinical Investigation, 2011, 121, 454-454.	8.2	0
99	Determination of Onset of Sexual Maturation and Mating Behavior by Melanocortin Receptor 4 Polymorphisms. Current Biology, 2010, 20, 1729-1734.	3.9	116
100	GPCR dimers moving closer. Nature Chemical Biology, 2010, 6, 570-571.	8.0	8
101	Fluorescent labeling of tetracysteine-tagged proteins in intact cells. Nature Protocols, 2010, 5, 1666-1677.	12.0	192
102	Polarization of Migrating Monocytic Cells Is Independent of PI 3-Kinase Activity. PLoS ONE, 2010, 5, e10159.	2.5	9
103	Ca ²⁺ Cycling and New Therapeutic Approaches for Heart Failure. Circulation, 2010, 121, 822-830.	1.6	111
104	Imaging of persistent cAMP signaling by internalized G protein-coupled receptors. Journal of Molecular Endocrinology, 2010, 45, 1-8.	2.5	67
105	Formation of a Ternary Complex among NHERF1, β-Arrestin, and Parathyroid Hormone Receptor. Journal of Biological Chemistry, 2010, 285, 30355-30362.	3.4	30
106	Agonist-regulated Cleavage of the Extracellular Domain of Parathyroid Hormone Receptor Type 1. Journal of Biological Chemistry, 2010, 285, 8665-8674.	3.4	16
107	A Fluorescence Resonance Energy Transfer-based M2 Muscarinic Receptor Sensor Reveals Rapid Kinetics of Allosteric Modulation. Journal of Biological Chemistry, 2010, 285, 8793-8800.	3.4	66
108	International Workshop at the Nobel Forum, Karolinska Institutet on G protein-coupled receptors: finding the words to describe monomers, oligomers, and their molecular mechanisms and defining their meaning. Can a consensus be reached?. Journal of Receptor and Signal Transduction Research, 2010, 30, 284-286.	2.5	37

#	Article	IF	CITATIONS
109	Cardiac β ₁ â€adrenoceptor autoantibodies in human heart disease: rationale and design of the Etiology, Titreâ€Course, and Survival (ETiCS) Study. European Journal of Heart Failure, 2010, 12, 753-762.	7.1	63
110	Distinct pools of cAMP centre on different isoforms of adenylyl cyclase in pituitary-derived GH3B6 cells. Journal of Cell Science, 2010, 123, 95-106.	2.0	76
111	Differential Signaling of the Endogenous Agonists at the β2-Adrenergic Receptor. Journal of Biological Chemistry, 2010, 285, 36188-36198.	3.4	101
112	GPCR-OKB: the G Protein Coupled Receptor Oligomer Knowledge Base. Bioinformatics, 2010, 26, 1804-1805.	4.1	74
113	G _q -mediated Ca ²⁺ signals inhibit adenylyl cyclases 5/6 in vascular smooth muscle cells. American Journal of Physiology - Cell Physiology, 2010, 298, C324-C332.	4.6	23
114	Targeting Receptor Antibodies in Immune Cardiomyopathy. Seminars in Thrombosis and Hemostasis, 2010, 36, 212-218.	2.7	33
115	Real-Time Monitoring of Somatostatin Receptor-cAMP Signaling in Live Pituitary. Endocrinology, 2010, 151, 4560-4565.	2.8	14
116	Dimerization in GPCR mobility and signaling. Current Opinion in Pharmacology, 2010, 10, 53-58.	3.5	145
117	Signaling by internalized G-protein-coupled receptors. Trends in Pharmacological Sciences, 2010, 31, 221-228.	8.7	225
118	l² ₂ -Adrenergic Receptor Redistribution in Heart Failure Changes cAMP Compartmentation. Science, 2010, 327, 1653-1657.	12.6	505
119	Site-Specific, Orthogonal Labeling of Proteins in Intact Cells with Two Small Biarsenical Fluorophores. Bioconjugate Chemistry, 2010, 21, 853-859.	3.6	41
120	Pathogenic relevance of autoantibodies in dilated cardiomyopathy. , 2010, , 157-170.		0
121	Sweet Taste Receptor Expressed in Pancreatic Î ² -Cells Activates the Calcium and Cyclic AMP Signaling Systems and Stimulates Insulin Secretion. PLoS ONE, 2009, 4, e5106.	2.5	254
122	Alterations of Phospholamban Function Can Exhibit Cardiotoxic Effects Independent of Excessive Sarcoplasmic Reticulum Ca ²⁺ -ATPase Inhibition. Circulation, 2009, 119, 436-444.	1.6	43
123	β-Arrestin-2 Interaction and Internalization of the Human P2Y ₁ Receptor Are Dependent on C-Terminal Phosphorylation Sites. Molecular Pharmacology, 2009, 76, 1162-1171.	2.3	29
124	Minireview: GPCR and G Proteins: Drug Efficacy and Activation in Live Cells. Molecular Endocrinology, 2009, 23, 590-599.	3.7	73
125	Persistent cAMP-Signals Triggered by Internalized G-Protein–Coupled Receptors. PLoS Biology, 2009, 7, e1000172.	5.6	471
126	Critical Role of Transcription Factor Cyclic AMP Response Element Modulator in β 1 -Adrenoceptor–Mediated Cardiac Dysfunction. Circulation, 2009, 119, 79-88.	1.6	38

#	Article	IF	CITATIONS
127	Fluorescence Resonance Energy Transfer Analysis of α _{2a} -Adrenergic Receptor Activation Reveals Distinct Agonist-Specific Conformational Changes. Molecular Pharmacology, 2009, 75, 534-541.	2.3	103
128	Imaging cytoplasmic cAMP in mouse brainstem neurons. BMC Neuroscience, 2009, 10, 29.	1.9	39
129	A technique for monitoring multiple signals with a combination of prism-based total internal reflection fluorescence microscopy and epifluorescence microscopy. Pflugers Archiv European Journal of Physiology, 2009, 459, 227-234.	2.8	5
130	Realâ€ŧime monitoring of cAMP levels in living endothelial cells: thrombin transiently inhibits adenylyl cyclase 6. Journal of Physiology, 2009, 587, 4091-4104.	2.9	27
131	Building a new conceptual framework for receptor heteromers. Nature Chemical Biology, 2009, 5, 131-134.	8.0	349
132	A new type of ERK1/2 autophosphorylation causes cardiac hypertrophy. Nature Medicine, 2009, 15, 75-83.	30.7	189
133	Analysis of receptor oligomerization by FRAP microscopy. Nature Methods, 2009, 6, 225-230.	19.0	187
134	Cardiac hypertrophy: Targeting Raf/MEK/ERK1/2-signaling. International Journal of Biochemistry and Cell Biology, 2009, 41, 2351-2355.	2.8	117
135	Novel Techniques for Real-Time Monitoring of cGMP in Living Cells. Handbook of Experimental Pharmacology, 2009, , 229-243.	1.8	19
136	Phosducin influences sympathetic activity and prevents stress-induced hypertension in humans and mice. Journal of Clinical Investigation, 2009, 119, 3597-3612.	8.2	37
137	Conformational changes in Gâ€proteinâ€coupled receptors—the quest for functionally selective conformations is open. British Journal of Pharmacology, 2008, 153, S358-66.	5.4	68
138	Kinetics of Gâ€proteinâ€coupled receptor signals in intact cells. British Journal of Pharmacology, 2008, 153, S125-32.	5.4	100
139	Conformational cross-talk between α2A-adrenergic and μ-opioid receptors controls cell signaling. Nature Chemical Biology, 2008, 4, 126-131.	8.0	248
140	Real-time monitoring of phosphodiesterase inhibition in intact cells. Cellular Signalling, 2008, 20, 1423-1431.	3.6	47
141	Pathological autoantibodies in cardiomyopathy. Autoimmunity, 2008, 41, 454-461.	2.6	50
142	Blocking Them All: β-Arrestins Inhibit Cellular Signaling. Molecular Cell, 2008, 31, 619-621.	9.7	6
143	Widespread Receptivity to Neuropeptide PDF throughout the Neuronal Circadian Clock Network of Drosophila Revealed by Real-Time Cyclic AMP Imaging. Neuron, 2008, 58, 223-237.	8.1	295
144	Optical techniques to analyze real-time activation and signaling of G-protein-coupled receptors. Trends in Pharmacological Sciences, 2008, 29, 159-165.	8.7	119

#	Article	IF	CITATIONS
145	Dual Role of the β2-Adrenergic Receptor C Terminus for the Binding of β-Arrestin and Receptor Internalization. Journal of Biological Chemistry, 2008, 283, 31840-31848.	3.4	43
146	An RNA molecule that specifically inhibits G-protein-coupled receptor kinase 2 in vitro. Rna, 2008, 14, 524-534.	3.5	49
147	Cytoplasmic cAMP concentrations in intact cardiac myocytes. American Journal of Physiology - Cell Physiology, 2008, 295, C414-C422.	4.6	83
148	Agonist-selective, Receptor-specific Interaction of Human P2Y Receptors with β-Arrestin-1 and -2. Journal of Biological Chemistry, 2008, 283, 30933-30941.	3.4	82
149	Integrin αE(CD103)β7 influences cellular shape and motility in a ligand-dependent fashion. Blood, 2008, 112, 619-625.	1.4	70
150	Gqâ€coupled Receptor signaling – A kinetic analysis in living cells. FASEB Journal, 2008, 22, 722.1.	0.5	0
151	Parathyroid hormone acts as a pharmacological chaperone on the parathyroid hormone receptor. FASEB Journal, 2008, 22, 726.10.	0.5	0
152	International Union of Basic and Clinical Pharmacology. LXVII. Recommendations for the Recognition and Nomenclature of G Protein-Coupled Receptor Heteromultimers. Pharmacological Reviews, 2007, 59, 5-13.	16.0	274
153	Direct Inhibition of Cardiac Hyperpolarization-Activated Cyclic Nucleotide–Gated Pacemaker Channels by Clonidine. Circulation, 2007, 115, 872-880.	1.6	47
154	Real-time optical recording of β1-adrenergic receptor activation reveals supersensitivity of the Arg389 variant to carvedilol. Journal of Clinical Investigation, 2007, 117, 229-235.	8.2	126
155	Kinetic Analysis of G Protein–Coupled Receptor Signaling Using Fluorescence Resonance Energy Transfer in Living Cells. Advances in Protein Chemistry, 2007, 74, 167-188.	4.4	33
156	Live Cell Monitoring of μ-Opioid Receptor-mediated G-protein Activation Reveals Strong Biological Activity of Close Morphine Biosynthetic Precursors. Journal of Biological Chemistry, 2007, 282, 27126-27132.	3.4	25
157	A Role for Caspase-1 in Heart Failure. Circulation Research, 2007, 100, 645-653.	4.5	98
158	Monitoring receptor signaling by intramolecular FRET. Current Opinion in Pharmacology, 2007, 7, 547-553.	3.5	54
159	A Novel Fluorescence Method for the Rapid Detection of Functional β1-Adrenergic Receptor Autoantibodies in Heart Failure. Journal of the American College of Cardiology, 2007, 50, 423-431.	2.8	86
160	Activation of AP-1 Contributes to the \hat{l}^2 -Adrenoceptor-Mediated Myocardial Induction of Interleukin-6. Molecular Medicine, 2007, 13, 605-614.	4.4	22
161	FRET-based method for rapid screening of PDE-inhibitors in living cells. BMC Pharmacology, 2007, 7, .	0.4	0
162	Rapid monitoring of intracellular cGMP. BMC Pharmacology, 2007, 7, .	0.4	0

#	Article	IF	CITATIONS
163	cAMP microdomains and L-type Ca2+channel regulation in guinea-pig ventricular myocytes. Journal of Physiology, 2007, 580, 765-776.	2.9	64
164	Requirements and ontology for a G protein-coupled receptor oligomerization knowledge base. BMC Bioinformatics, 2007, 8, 177.	2.6	42
165	Interstitial remodeling in β1-adrenergic receptor transgenic mice. Basic Research in Cardiology, 2007, 102, 183-193.	5.9	46
166	G Protein Coupled Receptor Kinases. , 2007, , 1-19.		1
167	Direct Measurement Of Receptor/Gq Interaction. FASEB Journal, 2007, 21, A429.	0.5	0
168	Stimulating autoantibodies directed against the cardiac β1-adrenergic receptor predict increased mortality in idiopathic cardiomyopathy. American Heart Journal, 2006, 152, 697-704.	2.7	124
169	Beta 1-adrenergic receptor-directed autoimmunity as a cause of dilated cardiomyopathy in rats. International Journal of Cardiology, 2006, 112, 7-14.	1.7	44
170	G protein—coupled receptors: too many dimers?. Nature Methods, 2006, 3, 972-973.	19.0	12
171	Fluorescent sensors for rapid monitoring of intracellular cGMP. Nature Methods, 2006, 3, 23-25.	19.0	175
172	β1-Adrenergic Receptor Function, Autoimmunity, and Pathogenesis of Dilated Cardiomyopathy. Trends in Cardiovascular Medicine, 2006, 16, 20-24.	4.9	69
173	Simultaneous Optical Measurements of Cytosolic Ca2+ and cAMP in Single Cells. Science's STKE: Signal Transduction Knowledge Environment, 2006, 2006, pl6-pl6.	3.9	34
174	SUMO-1 Controls the Protein Stability and the Biological Function of Phosducin*. Journal of Biological Chemistry, 2006, 281, 8357-8364.	3.4	60
175	Cyclic AMP Imaging in Adult Cardiac Myocytes Reveals Far-Reaching β 1 -Adrenergic but Locally Confined β 2 -Adrenergic Receptor–Mediated Signaling. Circulation Research, 2006, 99, 1084-1091.	4.5	321
176	Cardiac myosin missense mutations cause dilated cardiomyopathy in mouse models and depress molecular motor function. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14525-14530.	7.1	90
177	GS Activation Is Time-limiting in Initiating Receptor-mediated Signaling. Journal of Biological Chemistry, 2006, 281, 33345-33351.	3.4	116
178	Molecular Basis of Partial Agonism at the Neurotransmitter α2A-Adrenergic Receptor and Gi-protein Heterotrimer. Journal of Biological Chemistry, 2006, 281, 24506-24511.	3.4	97
179	Monitoring of cAMP Synthesis and Degradation in Living Cells. Physiology, 2006, 21, 86-92.	3.1	89
180	Molecular basis of inverse agonism in a G protein–coupled receptor. Nature Chemical Biology, 2005, 1, 25-28.	8.0	137

#	Article	IF	CITATIONS
181	The transcriptional repressor Nab1 is a specific regulator of pathological cardiac hypertrophy. Nature Medicine, 2005, 11, 837-844.	30.7	105
182	A FlAsH-based FRET approach to determine G protein–coupled receptor activation in living cells. Nature Methods, 2005, 2, 171-176.	19.0	471
183	Dynamics of receptor/G protein coupling in living cells. EMBO Journal, 2005, 24, 4106-4114.	7.8	188
184	Peptide inhibitors of G protein-coupled receptor kinases. Biochemical Pharmacology, 2005, 70, 1001-1008.	4.4	33
185	G Protein Activation without Subunit Dissociation Depends on a Gαi-specific Region*. Journal of Biological Chemistry, 2005, 280, 24584-24590.	3.4	140
186	Real-time Monitoring of the PDE2 Activity of Live Cells. Journal of Biological Chemistry, 2005, 280, 1716-1719.	3.4	122
187	Self-Limitation of Intravenous Tocolysis with β2-Adrenergic Agonists Is Mediated through Receptor G Protein Uncoupling. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 2882-2887.	3.6	18
188	β-Arrestin Binding to the β2-Adrenergic Receptor Requires Both Receptor Phosphorylation and Receptor Activation. Journal of Biological Chemistry, 2005, 280, 9528-9535.	3.4	157
189	Turn-on switch in parathyroid hormone receptor by a two-step parathyroid hormone binding mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 16084-16089.	7.1	168
190	Interplay of Ca2+ and cAMP Signaling in the Insulin-secreting MIN6 Î ² -Cell Line. Journal of Biological Chemistry, 2005, 280, 31294-31302.	3.4	183
191	Phosducin-like Protein Regulates G-Protein βγ Folding by Interaction with Tailless Complex Polypeptide-1α. Journal of Biological Chemistry, 2005, 280, 20042-20050.	3.4	50
192	Novel Single Chain cAMP Sensors for Receptor-induced Signal Propagation. Journal of Biological Chemistry, 2004, 279, 37215-37218.	3.4	630
193	Altered Calcium Handling Is Critically Involved in the Cardiotoxic Effects of Chronic β-Adrenergic Stimulation. Circulation, 2004, 109, 1154-1160.	1.6	97
194	Hypoglycemia-Dependent β ₂ -Adrenoceptor Downregulation: A Contributing Factor to Hypoglycemia Unawareness in Patients with Type-1 Diabetes?. Hormone Research in Paediatrics, 2004, 62, 137-141.	1.8	3
195	Fluorescence Resonance Energy Transfer–Based Analysis of cAMP Dynamics in Live Neonatal Rat Cardiac Myocytes Reveals Distinct Functions of Compartmentalized Phosphodiesterases. Circulation Research, 2004, 95, 67-75.	4.5	341
196	Transgenic triadin 1 overexpression alters SR Ca2+ handling and leads to a blunted contractile response to β-adrenergic agonists. Cardiovascular Research, 2004, 62, 122-134.	3.8	26
197	Comparative pharmacology of human تز1⁄2-adrenergic receptor subtypes?characterization of stably transfected receptors in CHO cells. Naunyn-Schmiedeberg's Archives of Pharmacology, 2004, 369, 151-159.	3.0	279
198	Calcium channel function and regulation in � 1 - and � 2 -adrenoceptor transgenic mice. Naunyn-Schmiedeberg's Archives of Pharmacology, 2004, 369, 490-495.	3.0	4

#	Article	IF	CITATIONS
199	Circadian and Short-Term Regulation of Blood Pressure and Heart Rate in Transgenic Mice with Cardiac Overexpression of The β1-Adrenoceptor. Chronobiology International, 2004, 21, 205-216.	2.0	27
200	β-Adrenoceptor polymorphisms and heart failure. Trends in Molecular Medicine, 2004, 10, 55-58.	6.7	18
201	Kinetics of G-protein-coupled receptor signalling and desensitization. Biochemical Society Transactions, 2004, 32, 1029-1031.	3.4	26
202	Direct evidence for a β1-adrenergic receptor–directed autoimmune attack as a cause of idiopathic dilated cardiomyopathy. Journal of Clinical Investigation, 2004, 113, 1419-1429.	8.2	300
203	Direct evidence for a β1-adrenergic receptor–directed autoimmune attack as a cause of idiopathic dilated cardiomyopathy. Journal of Clinical Investigation, 2004, 113, 1419-1429.	8.2	192
204	Peptide G protein agonists from a phage display library. Biochemical Pharmacology, 2003, 65, 961-967.	4.4	15
205	Protein kinase C switches the Raf kinase inhibitor from Raf-1 to GRK-2. Nature, 2003, 426, 574-579.	27.8	353
206	Effects of two Gβγ-binding proteins – N-terminally truncated phosducin and β-adrenergic receptor kinase C terminus (βARKct) – in heart failure. Gene Therapy, 2003, 10, 1354-1361.	4.5	39
207	Measurement of the millisecond activation switch of G protein–coupled receptors in living cells. Nature Biotechnology, 2003, 21, 807-812.	17.5	400
208	Direct optical recording of intrinsic efficacy at a G protein-coupled receptor. Life Sciences, 2003, 74, 397-404.	4.3	20
209	Alterations in the myocardial creatine kinase system precede the development of contractile dysfunction in β1-adrenergic receptor transgenic mice. Journal of Molecular and Cellular Cardiology, 2003, 35, 389-397.	1.9	31
210	Regulation of Phosducin-like Protein by Casein Kinase 2 and N-terminal Splicing. Journal of Biological Chemistry, 2003, 278, 4474-4481.	3.4	24
211	Partial Agonist Activity of Bucindolol Is Dependent on the Activation State of the Human \hat{I}^2 1 -Adrenergic Receptor. Circulation, 2003, 108, 348-353.	1.6	50
212	What Is the Role of Î ² -Adrenergic Signaling in Heart Failure?. Circulation Research, 2003, 93, 896-906.	4.5	687
213	The Amino-terminal Domain of G-protein-coupled Receptor Kinase 2 Is a Regulatory Gβγ Binding Site. Journal of Biological Chemistry, 2003, 278, 8052-8057.	3.4	45
214	Regulation of the Inward Rectifying Properties of G-protein-activated Inwardly Rectifying K+ (GIRK) Channels by Gβγ Subunits. Journal of Biological Chemistry, 2003, 278, 1037-1043.	3.4	42
215	Common Genomic Response in Different Mouse Models of β-Adrenergic–Induced Cardiomyopathy. Circulation, 2003, 108, 2926-2933.	1.6	68
216	Differential Control of Adrenal and Sympathetic Catecholamine Release by α2-Adrenoceptor Subtypes. Molecular Endocrinology, 2003, 17, 1640-1646.	3.7	147

#	Article	IF	CITATIONS
217	Activation of $\hat{I}\pm 2B$ -Adrenoceptors Mediates the Cardiovascular Effects of Etomidate. Anesthesiology, 2003, 99, 889-895.	2.5	88
218	Gi protein activation in intact cells involves subunit rearrangement rather than dissociation. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 16077-16082.	7.1	377
219	Disruption of cardiac Ena-VASP protein localization in intercalated disks causes dilated cardiomyopathy. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 285, H2471-H2481.	3.2	39
220	Molecular mechanisms of receptor activation: real-time analysis by fluorescence resonance energy transfer. Autonomic and Autacoid Pharmacology, 2003, 23, 231-3.	0.5	1
221	Feedback Inhibition of Catecholamine Release by Two Different α 2 -Adrenoceptor Subtypes Prevents Progression of Heart Failure. Circulation, 2002, 106, 2491-2496.	1.6	179
222	Modulation of a Brain Voltage-gated K+ Channel by Syntaxin 1A Requires the Physical Interaction of GβĴ³ with the Channel. Journal of Biological Chemistry, 2002, 277, 34909-34917.	3.4	27
223	Mutation of Asn293 to Asp in Transmembrane Helix VI Abolishes Agonist-Induced but Not Constitutive Activity of the β2-Adrenergic Receptor. Molecular Pharmacology, 2002, 62, 1431-1437.	2.3	24
224	Internalization Determinants of the Parathyroid Hormone Receptor Differentially Regulate β-Arrestin/Receptor Association. Journal of Biological Chemistry, 2002, 277, 8121-8129.	3.4	97
225	Dual Regulation of the Parathyroid Hormone (PTH)/PTH-Related Peptide Receptor Signaling by Protein Kinase C and β-Arrestins. Endocrinology, 2002, 143, 3854-3865.	2.8	43
226	Inhibition of Na ⁺ -H ⁺ Exchange Prevents Hypertrophy, Fibrosis, and Heart Failure in β ₁ -Adrenergic Receptor Transgenic Mice. Circulation Research, 2002, 90, 814-819.	4.5	186
227	Magnesium and the parathyroid. Current Opinion in Nephrology and Hypertension, 2002, 11, 403-410.	2.0	111
228	Placental α2-adrenoceptors control vascular development at the interface between mother and embryo. Nature Genetics, 2002, 31, 311-315.	21.4	65
229	Dobutamine-Stress Magnetic Resonance Microimaging in Mice. Circulation Research, 2001, 88, 563-569.	4.5	143
230	Protein Kinase A Transgenes. Circulation Research, 2001, 89, 938-940.	4.5	22
231	Differential Distribution of β-Adrenergic Receptor Subtypes in Blood Vessels of Knockout Mice Lacking β1- or β2-Adrenergic Receptors. Molecular Pharmacology, 2001, 60, 955-962.	2.3	95
232	Abolition of (-)-CGP 12177-evoked cardiostimulation in double ? 1 /? 2 -adrenoceptor knockout mice. Obligatory role of ? 1 -adrenoceptors for putative ? 4 -adrenoceptor pharmacology. Naunyn-Schmiedeberg's Archives of Pharmacology, 2001, 363, 87-93.	3.0	106
233	Immunofluorescent imaging of β1- and β2-adrenergic receptors in rat kidney. Kidney International, 2001, 59, 515-531.	5.2	68
234	Activation and Deactivation Kinetics of α2A- and α2C-Adrenergic Receptor-activated G Protein-activated Inwardly Rectifying K+ Channel Currents. Journal of Biological Chemistry, 2001, 276, 47512-47517.	3.4	85

#	Article	IF	CITATIONS
235	Paradoxical Block of Parathormone Secretion Is Mediated by Increased Activity of Gα Subunits. Journal of Biological Chemistry, 2001, 276, 6763-6769.	3.4	83
236	Phosphorylation of GRK2 by Protein Kinase C Abolishes Its Inhibition by Calmodulin. Journal of Biological Chemistry, 2001, 276, 1911-1915.	3.4	84
237	Differential Conformational Requirements for Activation of G Proteins and the Regulatory Proteins Arrestin and G Protein-coupled Receptor Kinase in the G Protein-coupled Receptor for Parathyroid Hormone (PTH)/PTH-related Protein. Journal of Biological Chemistry, 2001, 276, 33435-33443.	3.4	95
238	Early impairment of calcium handling and altered expression of junctin in hearts of mice overexpressing the l² 1 â~ adrenergic receptor. FASEB Journal, 2001, 15, 1-18.	0.5	50
239	Receptor-Ligand Interactions Studied with Homogeneous Fluorescence-Based Assays Suitable for Miniaturized Screening. Journal of Biomolecular Screening, 2001, 6, 11-18.	2.6	30
240	Vascular Hypertrophy and Increased P70S6 Kinase in Mice Lacking the Angiotensin II AT 2 Receptor. Circulation, 2001, 104, 2602-2607.	1.6	54
241	Protein kinase a transgenes: the many faces of cAMP. Circulation Research, 2001, 89, 938-40.	4.5	7
242	Determination of Adrenergic Receptor mRNAs by Quantitative Reverse Transcriptase-Polymerase Chain Reactions. , 2000, 126, 155-168.		1
243	Quantification of the tissue levels and function of the G-protein regulator phosducin-like protein (PhIP). Naunyn-Schmiedeberg's Archives of Pharmacology, 2000, 362, 435-439.	3.0	19
244	Signaling by extracellular nucleotides and nucleosides. Naunyn-Schmiedeberg's Archives of Pharmacology, 2000, 362, 295-298.	3.0	41
245	Activation of the A 3 adenosine receptor affects cell cycle progression and cell growth. Naunyn-Schmiedeberg's Archives of Pharmacology, 2000, 361, 225-234.	3.0	79
246	Phosphorylation of Phosducin and Phosducin-like Protein by G Protein-coupled Receptor Kinase 2. Journal of Biological Chemistry, 2000, 275, 29724-29730.	3.4	49
247	Acute changes of myocardial creatine kinase gene expression under β-adrenergic stimulation. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2000, 1502, 471-480.	3.8	8
248	Modulation of beta1-adrenoceptor activity by domain-specific antibodies and heart failure–associated autoantibodies. Journal of the American College of Cardiology, 2000, 36, 1280-1287.	2.8	87
249	Study of Interaction between Agonists and Asn293 in Helix VI of Human β2-Adrenergic Receptor. Molecular Pharmacology, 1999, 56, 909-916.	2.3	25
250	Phosphorylation-independent inhibition of parathyroid hormone receptor signaling by G protein-coupled receptor kinases. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 5476-5481.	7.1	129
251	Autoantibodies Activating Human β ₁ -Adrenergic Receptors Are Associated With Reduced Cardiac Function in Chronic Heart Failure. Circulation, 1999, 99, 649-654.	1.6	240
252	Crosstalk between Galpha i- and Galpha q-coupled receptors is mediated by Gbeta gamma exchange. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 10626-10631.	7.1	80

MARTIN J LOHSE

#	Article	IF	CITATIONS
253	Progressive hypertrophy and heart failure in \hat{I}^2 ₁ -adrenergic receptor transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 7059-7064.	7.1	719
254	G-proteins and their regulators. Naunyn-Schmiedeberg's Archives of Pharmacology, 1999, 360, 3-4.	3.0	7
255	Binding of Gβγ subunits to cRaf1 downregulates G-protein-coupled receptor signalling. Current Biology, 1999, 9, 971-S2.	3.9	22
256	New directions in pharmacology. Lancet, The, 1999, 354, SIV52.	13.7	0
257	Activating beta-1-adrenoceptor antibodies are not associated with cardiomyopathies secondary to valvular or hypertensive heart disease. Journal of the American College of Cardiology, 1999, 34, 1545-1551.	2.8	37
258	Effects of phosducin on the GTPase cycle of Go. Naunyn-Schmiedeberg's Archives of Pharmacology, 1998, 357, 371-377.	3.0	11
259	Pharmacology of NO:cGMP signal transduction. Naunyn-Schmiedeberg's Archives of Pharmacology, 1998, 358, 111-112.	3.0	41
260	The future of pharmacology. Trends in Pharmacological Sciences, 1998, 19, 198-200.	8.7	4
261	Changes of Creatine Kinase Gene Expression in Rat Heart Post-Myocardial Infarction. Journal of Molecular and Cellular Cardiology, 1998, 30, 803-810.	1.9	25
262	Agonist Regulation of Human β2-Adrenergic Receptor mRNA Stability Occurs via a Specific AU-rich Element. Journal of Biological Chemistry, 1998, 273, 3223-3229.	3.4	58
263	Interactions of Phosducin with the Subunits of G-Proteins. Journal of Biological Chemistry, 1998, 273, 9465-9471.	3.4	17
264	Tocolytic Therapy with Fenoterol Induces Selective Down-Regulation of β-Adrenergic Receptors in Human Myometrium ¹ . Journal of Clinical Endocrinology and Metabolism, 1997, 82, 1235-1242.	3.6	36
265	Phosducin, Potential Role in Modulation of Olfactory Signaling. Journal of Biological Chemistry, 1997, 272, 4606-4612.	3.4	41
266	Cell type-specific regulation of β2-adrenoceptor mRNA by agonists. European Journal of Pharmacology, 1997, 331, 73-78.	3.5	16
267	Probing human β1- and β2-adrenoceptors with domain-specific fusion protein antibodies. European Journal of Pharmacology, 1997, 334, 115-126.	3.5	1
268	Constitutively active germline mutation of the thyrotropin receptor gene as a cause of congenital hyperthyroidism. Journal of Pediatrics, 1997, 131, 899-904.	1.8	53
269	Selectivity of β-adrenergic receptor kinase 2 for G protein βγ subunits. FEBS Letters, 1997, 401, 25-29.	2.8	18
270	Identification of a C-terminal binding site for G-protein Î ² Î ³ -subunits in phosducin-like protein. FEBS Letters, 1997, 401, 243-246.	2.8	20

#	Article	IF	CITATIONS
271	A dileucine motif in the C terminus of the Â2-adrenergic receptor is involved in receptor internalization. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 12285-12290.	7.1	85
272	A small region in phosducin inhibits G-protein beta gamma -subunit function. EMBO Journal, 1997, 16, 4908-4915.	7.8	36
273	Expression of β2-adrenoceptors in halobacteria. Naunyn-Schmiedeberg's Archives of Pharmacology, 1997, 355, 150-160.	3.0	13
274	Tocolytic Therapy with Fenoterol Induces Selective Down-Regulation of Â-Adrenergic Receptors in Human Myometrium. Journal of Clinical Endocrinology and Metabolism, 1997, 82, 1235-1242.	3.6	25
275	Analysis of beta-adrenergic receptor mRNA levels in human ventricular biopsy specimens by quantitative polymerase chain reactions: Progressive reduction of beta1-adrenergic receptor mRNA in heart failure. Journal of the American College of Cardiology, 1996, 27, 146-154.	2.8	102
276	Mutations of Tyr326 in the β2-adrenoceptor disrupt multiple receptor functions. European Journal of Pharmacology, 1996, 307, 243-250.	3.5	43
277	Probing human β1- and β2-adrenoceptors with domain-specific fusion protein antibodies. European Journal of Pharmacology, 1996, 316, 111-121.	3.5	24
278	Protein kinase cross-talk: membrane targeting of the beta-adrenergic receptor kinase by protein kinase C Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 2105-2109.	7.1	167
279	Involvement of Asn-293 in stereospecific agonist recognition and in activation of the beta 2-adrenergic receptor Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 9276-9281.	7.1	187
280	Regulators of G-protein-mediated signalling. Biochemical Society Transactions, 1996, 24, 975-980.	3.4	17
281	REGULATION OF G-PROTEIN-MEDIATED SIGNALLING BY REGULATORY PROTEINS. Biochemical Society Transactions, 1996, 24, 575S-575S.	3.4	0
282	Phosducin is a ubiquitous G-protein regulator Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 10145-10150.	7.1	72
283	Inhibition of G-protein betagamma-subunit functions by phosducin-like protein Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 2100-2104.	7.1	63
284	G-protein-coupled receptor kinases. Kidney International, 1996, 49, 1047-1052.	5.2	60
285	Interactions of Phosducin with Defined G Protein βγ-Subunits. Journal of Biological Chemistry, 1996, 271, 11781-11786.	3.4	51
286	Ligand-induced Phosphorylation/Dephosphorylation of the Endogenous Bradykinin B2 Receptor from Human Fibroblasts. Journal of Biological Chemistry, 1996, 271, 32366-32374.	3.4	116
287	Expression of Phosducin in a Phosducin-negative Cell Line Reveals Functions of a Gβγ-binding Protein. Journal of Biological Chemistry, 1996, 271, 22546-22551.	3.4	32
288	Activation of β-Adrenergic Receptor Kinase During Myocardial Ischemia. Circulation Research, 1996, 79, 455-460.	4.5	107

#	Article	IF	CITATIONS
289	Binding of Purified Recombinant beta-arrestin to Guanine-Nucleotide-Binding-Protein-Coupled Receptors. FEBS Journal, 1995, 232, 464-472.	0.2	7
290	G-protein-coupled receptor kinases and the heart. Trends in Cardiovascular Medicine, 1995, 5, 63-68.	4.9	25
291	The role of G-protein βγsubunits in signal transduction. Biochemical Society Transactions, 1995, 23, 141-148.	3.4	49
292	Expression, purification, and characterization of the cGMP-dependent protein kinases ll2 and II using the baculovirus system. FEBS Letters, 1995, 374, 419-425.	2.8	54
293	Desensitization of A1 Adenosine Receptors. , 1995, , 133-138.		1
294	Binding of Purified Recombinant beta-arrestin to Guanine-Nucleotide-Binding-Protein-Coupled Receptors. FEBS Journal, 1995, 232, 464-472.	0.2	39
295	Sequestration and recycling of beta 2-adrenergic receptors permit receptor resensitization. Molecular Pharmacology, 1995, 47, 666-76.	2.3	287
296	Expression of beta-arrestins and beta-adrenergic receptor kinases in the failing human heart Circulation Research, 1994, 74, 206-213.	4.5	284
297	A1 adenosine receptors expressed in CHO-cells couple to adenylyl cyclase and to phospholipase C. Naunyn-Schmiedeberg's Archives of Pharmacology, 1994, 350, 49-56.	3.0	54
298	Phosducin inhibits receptor phosphorylation by the β-adrenergic receptor kinase in a PKA-regulated manner. FEBS Letters, 1994, 343, 120-124.	2.8	89
299	A constitutively active mutant beta 2-adrenergic receptor is constitutively desensitized and phosphorylated Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 2699-2702.	7.1	127
300	Quantification of Â-Adrenoceptors and Â-Adrenoceptor Kinase on Protein and mRNA Levels in Heart Failure. European Heart Journal, 1994, 15, 30-34.	2.2	27
301	Purification and functional characterization of β-adrenergic receptor kinase expressed in insect cells. FEBS Letters, 1993, 324, 59-62.	2.8	25
302	Molecular mechanisms of membrane receptor desensitization. Biochimica Et Biophysica Acta - Molecular Cell Research, 1993, 1179, 171-188.	4.1	393
303	Altered expression of beta-adrenergic receptor kinase and beta 1-adrenergic receptors in the failing human heart Circulation, 1993, 87, 454-463.	1.6	835
304	Chapter 5 The Î ² -adrenoceptors. New Comprehensive Biochemistry, 1993, 24, 137-180.	0.1	1
305	Specific enhancement of beta-adrenergic receptor kinase activity by defined G-protein beta and gamma subunits Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 10439-10443.	7.1	73
306	Overexpression of beta-arrestin and beta-adrenergic receptor kinase augment desensitization of beta 2-adrenergic receptors. Journal of Biological Chemistry, 1993, 268, 3201-8.	3.4	166

#	Article	IF	CITATIONS
307	Effects of Adenosine on Histamine Release from Human Lung Fragments. International Archives of Allergy and Immunology, 1992, 98, 50-56.	2.1	16
308	Desensitization of the isolated .beta.2-adrenergic receptor by .betaadrenergic receptor kinase, cAMP-dependent protein kinase, and protein kinase C occurs via distinct molecular mechanisms. Biochemistry, 1992, 31, 3193-3197.	2.5	178
309	2-Alkynyl derivatives of adenosine and adenosine-5'-N-ethyluronamide as selective agonists at A2 adenosine receptors. Journal of Medicinal Chemistry, 1992, 35, 2363-2368.	6.4	98
310	Phosducin is a protein kinase A-regulated G-protein regulator. Nature, 1992, 358, 73-76.	27.8	289
311	Stable overexpression of human ?2-adrenergic receptors in mammalian cells. Naunyn-Schmiedeberg's Archives of Pharmacology, 1992, 345, 444-51.	3.0	32
312	Adenosine A1 receptor gene structure and regulation in normotensive and spontaneously hypertensive rats. European Journal of Pharmacology, 1992, 226, 381-382.	2.6	3
313	Structure and Regulation of G Protein-Coupled Receptors: The β2-Adrenergic Receptor as a Model. Vitamins and Hormones, 1991, 46, 1-39.	1.7	51
314	Comparative rates of desensitization of beta-adrenergic receptors by the beta-adrenergic receptor kinase and the cyclic AMP-dependent protein kinase Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 6201-6204.	7.1	227
315	Mechanisms involved in adrenergic receptor desensitization. Biochemical Society Transactions, 1990, 18, 541-544.	3.4	31
316	Autoradiographic Visualization of A1Adenosine Receptors in Rat Brain with [3H]8-Cyclopentyl-1,3-Dipropylxanthine. Journal of Neurochemistry, 1990, 54, 1344-1353.	3.9	38
317	β-Arrestin: a Protein that Regulates β-adrenergic Receptor Function. Science, 1990, 248, 1547-1550.	12.6	1,130
318	Effects of 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), a highly selective adenosine receptor antagonist, on force of contraction in guinea-pig atrial and ventricular cardiac preparations. Naunyn-Schmiedeberg's Archives of Pharmacology, 1989, 340, 204-209.	3.0	38
319	2-Chloro-N6-[3H]cyclopentyladenosine ([3HCCPA) ?a high affinity agonist radioligand for A1 adenosine receptors. Naunyn-Schmiedeberg's Archives of Pharmacology, 1989, 340, 679-683.	3.0	124
320	Neural cell adhesion molecules influence second messenger systems. Neuron, 1989, 3, 13-20.	8.1	386
321	Interaction between the release of adenosine and noradrenaline during sympathetic stimulation: A feed-back mechanism in rat heart. Journal of Molecular and Cellular Cardiology, 1989, 21, 269-277.	1.9	33
322	Radiation inactivation analysis of the A1 adenosine receptor of rat brain Decrease in radiation inactivation size in the presence of guanine nucleotide. FEBS Letters, 1989, 252, 125-128.	2.8	8
323	Synergistic effects of calciumâ€mobilizing agents and adenosine on histamine release from rat peritoneal mast cells. British Journal of Pharmacology, 1989, 98, 1392-1398.	5.4	11
324	Calcium-Antagonist Receptors in Cardiomyopathy. New England Journal of Medicine, 1989, 321, 686-687.	27.0	2

#	Article	IF	CITATIONS
325	Inhibition of beta-adrenergic receptor kinase prevents rapid homologous desensitization of beta 2-adrenergic receptors Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 3011-3015.	7.1	117
326	The genomic clone G-21 which resembles a β-adrenergic receptor sequence encodes the 5-HT1A receptor. Nature, 1988, 335, 358-360.	27.8	611
327	Adenosine receptor agonists: synthesis and biological evaluation of 1-deaza analogs of adenosine derivatives. Journal of Medicinal Chemistry, 1988, 31, 1179-1183.	6.4	49
328	Separation of solubilized A2 adenosine receptors of human platelets from non-receptor [3H]NECA binding sites by gel filtration. Naunyn-Schmiedeberg's Archives of Pharmacology, 1988, 337, 64-8.	3.0	55
329	Properties of cardiac alpha- and beta-adrenoceptors in spontaneously hypertensive rats. Naunyn-Schmiedeberg's Archives of Pharmacology, 1988, 338, 383-91.	3.0	34
330	2-Chloro-N6-cyclopentyladenosine: a highly selective agonist at A1 adenosine receptors. Naunyn-Schmiedeberg's Archives of Pharmacology, 1988, 337, 687-9.	3.0	120
331	2′,3′-Dideoxy-N6-cyclohexyladenosine: an adenosine derivative with antagonist properties at adenosine receptors. European Journal of Pharmacology, 1988, 156, 157-160.	3.5	40
332	Autoradiographic visualization of A1-adenosine receptors in brain and peripheral tissues of rat and guinea pig using 125I-HPIA. Neuroscience Letters, 1988, 87, 215-220.	2.1	30
333	[3H]-8-cyclopentyl-1,3-dipropylxanthine binding to A1 adenosine receptors of intact rat ventricular myocytes Circulation Research, 1988, 63, 613-620.	4.5	40
334	Adenosine regulates the Ca2+ sensitivity of mast cell mediator release Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 8875-8879.	7.1	17
335	Pertussis toxin does not inhibit the α1-adrenoceptor-mediated effect on inositol phosphate production in the heart. European Journal of Pharmacology, 1987, 134, 377-378.	3.5	54
336	8-Cyclopentyl-1,3-dipropylxanthine (DPCPX) ? a selective high affinity antagonist radioligand for A1 adenosine receptors. Naunyn-Schmiedeberg's Archives of Pharmacology, 1987, 336, 204-210.	3.0	367
337	Affinities of barbiturates for the GABA-receptor complex and A1 adenosine receptors: a possible explanation of their excitatory effects. Naunyn-Schmiedeberg's Archives of Pharmacology, 1987, 336, 211-217.	3.0	27
338	Dual actions of adenosine on rat peritoneal mast cells. Naunyn-Schmiedeberg's Archives of Pharmacology, 1987, 335, 555-60.	3.0	30
339	Interactions between intracellular cyclic AMP and agonist-induced inositol phospholipid breakdown in isolated gastric mucosal cells of the rat. Naunyn-Schmiedeberg's Archives of Pharmacology, 1987, 336, 471-7.	3.0	20
340	Pharmacological characterization of A1 adenosine receptors in isolated rat ventricular myocytes. Naunyn-Schmiedeberg's Archives of Pharmacology, 1987, 336, 342-8.	3.0	57
341	Pentobarbital Antagonizes the A1Adenosine Receptor-Mediated Inhibition of Hippocampal Neurotransmitter Release. Journal of Neurochemistry, 1987, 49, 189-194.	3.9	11
342	The glycoprotein nature of A1 adenosine receptors. Biochemical and Biophysical Research Communications, 1986, 140, 406-413.	2.1	29

MARTIN J LOHSE

#	Article	IF	CITATIONS
343	Synthesis of 2-Azido-(R)-N ⁶ -p-hydroxyphenylisopropyladenosine (R-AHPIA) as Potential Photoaffinity Probe for A ₁ Adenosine Receptors. Nucleosides & Nucleotides, 1986, 5, 213-222.	0.5	7
344	Characterization of the Solubilized A1Adenosine Receptor from Rat Brain Membranes. Journal of Neurochemistry, 1986, 46, 1528-1534.	3.9	51
345	Barbiturates Are Selective Antagonists at A1Adenosine Receptors. Journal of Neurochemistry, 1985, 45, 1761-1770.	3.9	58
346	Demonstration of Ri-type adenosine receptors in bovine myocardium by radioligand binding. Naunyn-Schmiedeberg's Archives of Pharmacology, 1985, 328, 310-316.	3.0	47
347	Xanthine derivatives as antagonists at A1 and A2 adenosine receptors. Naunyn-Schmiedeberg's Archives of Pharmacology, 1985, 330, 212-221.	3.0	148
348	Labelling of Ri adenosine receptors in rat fat cell membranes with (?)-[125iodo]N6-hydroxyphenylisopropyladenosine. Naunyn-Schmiedeberg's Archives of Pharmacology, 1984, 326, 233-240.	3.0	19
349	Interaction of barbiturates with adenosine receptors in rat brain. Naunyn-Schmiedeberg's Archives of Pharmacology, 1984, 326, 69-74.	3.0	72
350	Characterization of [3H]phenobarbital binding to rat brain membranes. Neuroscience Letters, 1984, 52, 97-101.	2.1	2