Kamal D Moudgil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2681505/publications.pdf

Version: 2024-02-01

159585 168389 2,950 61 30 53 citations g-index h-index papers 62 62 62 4305 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Cytokines in Autoimmunity: Role in Induction, Regulation, and Treatment. Journal of Interferon and Cytokine Research, 2011, 31, 695-703.	1.2	190
2	IL-27-induced modulation of autoimmunity and its therapeutic potential. Autoimmunity Reviews, 2015, 14, 1131-1141.	5.8	134
3	Diversification of  T Cell Responses to Carboxy-terminal Determinants within the 65-kD Heat-shock Protein Is Involved in Regulation of Autoimmune Arthritis. Journal of Experimental Medicine, 1997, 185, 1307-1316.	8.5	130
4	Heat-shock proteins can promote as well as regulate autoimmunity. Autoimmunity Reviews, 2009, 8, 388-393.	5.8	120
5	Immunomodulation of autoimmune arthritis by pro-inflammatory cytokines. Cytokine, 2017, 98, 87-96.	3.2	107
6	Celastrol, a Chinese herbal compound, controls autoimmune inflammation by altering the balance of pathogenic and regulatory T cells in the target organ. Clinical Immunology, 2015, 157, 228-238.	3.2	106
7	Regulation of autoimmune inflammation by pro-inflammatory cytokines. Immunology Letters, 2008, 120, 1-5.	2.5	105
8	Control of autoimmune inflammation by celastrol, a natural triterpenoid. Pathogens and Disease, 2016, 74, ftw059.	2.0	104
9	Celastrus-derived Celastrol Suppresses Autoimmune Arthritis by Modulating Antigen-induced Cellular and Humoral Effector Responses. Journal of Biological Chemistry, 2011, 286, 15138-15146.	3.4	100
10	Natural Products for the Treatment of Autoimmune Arthritis: Their Mechanisms of Action, Targeted Delivery, and Interplay with the Host Microbiome. International Journal of Molecular Sciences, 2018, 19, 2508.	4.1	98
11	A Cytokine-Centric View of the Pathogenesis and Treatment of Autoimmune Arthritis. Journal of Interferon and Cytokine Research, 2011, 31, 927-940.	1.2	88
12	Cytokine-Modulating Strategies and Newer Cytokine Targets for Arthritis Therapy. International Journal of Molecular Sciences, 2015, 16, 887-906.	4.1	84
13	Green Tea Protects Rats against Autoimmune Arthritis by Modulating Disease-Related Immune Events. Journal of Nutrition, 2008, 138, 2111-2116.	2.9	80
14	Celastrus and Its Bioactive Celastrol Protect against Bone Damage in Autoimmune Arthritis by Modulating Osteoimmune Cross-talk. Journal of Biological Chemistry, 2012, 287, 22216-22226.	3.4	79
15	Involvement of the IL-23/IL-17 axis and the Th17/Treg balance in the pathogenesis and control of autoimmune arthritis. Cytokine, 2015, 74, 54-61.	3.2	79
16	Extract of the Chinese herbal formula Huo Luo Xiao Ling Dan inhibited adjuvant arthritis in rats. Journal of Ethnopharmacology, 2009, 121, 366-371.	4.1	77
17	Celastrol and Its Role in ControllingÂChronic Diseases. Advances in Experimental Medicine and Biology, 2016, 928, 267-289.	1.6	71
18	Interleukin-27 and Interferon-Î ³ Are Involved in Regulation of Autoimmune Arthritis. Journal of Biological Chemistry, 2011, 286, 2817-2825.	3.4	65

#	Article	IF	CITATIONS
19	Immunomodulation of Autoimmune Arthritis by Herbal CAM. Evidence-based Complementary and Alternative Medicine, 2011, 2011, 1-13.	1.2	63
20	Nicotineâ€induced differential modulation of autoimmune arthritis in the Lewis rat involves changes in interleukinâ€17 and anti–cyclic citrullinated peptide antibodies. Arthritis and Rheumatism, 2011, 63, 981-991.	6.7	61
21	Understanding crypticity is the key to revealing the pathogenesis of autoimmunity. Trends in Immunology, 2005, 26, 355-359.	6.8	58
22	Traditional Chinese medicine: potential for clinical treatment of rheumatoid arthritis. Expert Review of Clinical Immunology, 2014, 10, 819-822.	3.0	55
23	The Regulatory C-Terminal Determinants within Mycobacterial Heat Shock Protein 65 Are Cryptic and Cross-Reactive with the Dominant Self Homologs: Implications for the Pathogenesis of Autoimmune Arthritis. Journal of Immunology, 2004, 173, 181-188.	0.8	52
24	The T Cells Specific for the Carboxyl-Terminal Determinants of Self (Rat) Heat-Shock Protein 65 Escape Tolerance Induction and Are Involved in Regulation of Autoimmune Arthritis. Journal of Immunology, 2004, 172, 2795-2802.	0.8	51
25	Suppression of autoimmune arthritis by Celastrus-derived Celastrol through modulation of pro-inflammatory chemokines. Bioorganic and Medicinal Chemistry, 2012, 20, 5229-5234.	3.0	50
26	Pristimerin, a naturally occurring triterpenoid, protects against autoimmune arthritis by modulating the cellular and soluble immune mediators of inflammation and tissue damage. Clinical Immunology, 2014, 155, 220-230.	3.2	44
27	Environmental Modulation of Autoimmune Arthritis Involves the Spontaneous Microbial Induction of T Cell Responses to Regulatory Determinants Within Heat Shock Protein 65. Journal of Immunology, 2001, 166, 4237-4243.	0.8	42
28	Peptides targeting inflamed synovial vasculature attenuate autoimmune arthritis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12857-12862.	7.1	41
29	Peptide-directed liposomal delivery improves the therapeutic index of an immunomodulatory cytokine in controlling autoimmune arthritis. Journal of Controlled Release, 2018, 286, 279-288.	9.9	39
30	<i>Tinospora cordifolia</i> inhibits autoimmune arthritis by regulating key immune mediators of inflammation and bone damage. International Journal of Immunopathology and Pharmacology, 2015, 28, 521-531.	2.1	36
31	Celastrol modulates inflammation through inhibition of the catalytic activity of mediators of arachidonic acid pathway: Secretory phospholipase A 2 group IIA, 5-lipoxygenase and cyclooxygenase-2. Pharmacological Research, 2016, 113, 265-275.	7.1	35
32	Celastrus aculeatus Merr. suppresses the induction and progression of autoimmune arthritis by modulating immune response to heat-shock protein 65. Arthritis Research and Therapy, 2007, 9, R70.	3.5	34
33	Regulation of autoimmune arthritis by the pro-inflammatory cytokine interferon-Î ³ . Clinical Immunology, 2008, 127, 98-106.	3.2	31
34	Peptide-targeted liposomal delivery of dexamethasone for arthritis therapy. Nanomedicine, 2019, 14, 1455-1469.	3.3	31
35	The Micro-RNA Expression Profiles of Autoimmune Arthritis Reveal Novel Biomarkers of the Disease and Therapeutic Response. International Journal of Molecular Sciences, 2018, 19, 2293.	4.1	30
36	The miRNA Expression Profile of Experimental Autoimmune Encephalomyelitis Reveals Novel Potential Disease Biomarkers. International Journal of Molecular Sciences, 2018, 19, 3990.	4.1	28

#	Article	IF	CITATIONS
37	Exogenous tumor necrosis factor-alpha induces suppression of autoimmune arthritis. Arthritis Research and Therapy, 2008, 10, R38.	3.5	26
38	Advances in Rheumatoid Arthritis Animal Models. Current Rheumatology Reports, 2011, 13, 456-463.	4.7	25
39	Suppression of Ongoing Experimental Arthritis by a Chinese Herbal Formula (Huo-Luo-Xiao-Ling Dan) Involves Changes in Antigen-Induced Immunological and Biochemical Mediators of Inflammation. Evidence-based Complementary and Alternative Medicine, 2011, 2011, 1-10.	1.2	24
40	Mediators of Inflammation-Induced Bone Damage in Arthritis and Their Control by Herbal Products. Evidence-based Complementary and Alternative Medicine, 2013, 2013, 1-20.	1.2	24
41	Celastrol suppresses experimental autoimmune encephalomyelitis via MAPK/SGK1-regulated mediators of autoimmune pathology. Inflammation Research, 2019, 68, 285-296.	4.0	24
42	Tolerization with Hsp65 induces protection against adjuvantâ€induced arthritis by modulating the antigenâ€directed interferonâ€Î³, interleukinâ€17, and antibody responses. Arthritis and Rheumatism, 2009, 60, 103-113.	6.7	21
43	Heat-Shock Proteins in Autoimmunity. Autoimmune Diseases, 2013, 2013, 1-3.	0.6	21
44	Interplay among cytokines and T cell subsets in the progression and control of immune-mediated diseases. Cytokine, 2015, 74, 1-4.	3.2	21
45	Microbiota-Derived Metabolites, Indole-3-aldehyde and Indole-3-acetic Acid, Differentially Modulate Innate Cytokines and Stromal Remodeling Processes Associated with Autoimmune Arthritis. International Journal of Molecular Sciences, 2021, 22, 2017.	4.1	21
46	Regulation of autoimmune arthritis by self–heat-shock proteins. Trends in Immunology, 2008, 29, 412-418.	6.8	19
47	Modulation of Adjuvant Arthritis by Cellular and Humoral Immunity to Hsp65. Frontiers in Immunology, 2016, 7, 203.	4.8	18
48	Microarray-based gene expression profiling reveals the mediators and pathways involved in the anti-arthritic activity of Celastrus-derived Celastrol. International Immunopharmacology, 2012, 13, 499-506.	3.8	17
49	Altered Th 17 /Treg balance and dysregulated IL- $1\hat{l}^2$ response influence susceptibility/resistance to experimental autoimmune arthritis. International Journal of Immunopathology and Pharmacology, 2015, 28, 318-328.	2.1	17
50	Common innate pathways to autoimmune disease. Clinical Immunology, 2020, 212, 108361.	3.2	14
51	Evidence-Based TAM Classic Herbal Formula: From Myth to Science. Evidence-based Complementary and Alternative Medicine, 2017, 2017, 1-3.	1.2	9
52	A novel CNS-homing peptide for targeting neuroinflammatory lesions in experimental autoimmune encephalomyelitis. Molecular and Cellular Probes, 2020, 51, 101530.	2.1	9
53	Control of autoimmune arthritis by herbal extracts and their bioactive components. Asian Journal of Pharmaceutical Sciences, 2016, 11, 301-307.	9.1	8
54	Modulation of autoimmune arthritis by environmental †hygiene†and commensal microbiota. Cellular Immunology, 2019, 339, 59-67.	3.0	7

#	Article	IF	CITATIONS
55	Viewing Autoimmune Pathogenesis from the Perspective of Antigen Processing and Determinant Hierarchy. Critical Reviews in Immunology, 2020, 40, 329-339.	0.5	6
56	Temporal cytokine expression and the target organ attributes unravel novel aspects of autoimmune arthritis. Indian Journal of Medical Research, 2013, 138, 717-31.	1.0	6
57	Crypticity of self antigenic determinants is the cornerstone of a theory of autoimmunity. Discovery Medicine, 2005, 5, 378-82.	0.5	6
58	Natural Products as Source of Anti-Inflammatory Drugs. , 0, , 1661-1690.		4
59	Advances in the pathogenesis and treatment of autoimmunity. Cellular Immunology, 2019, 339, 1-3.	3.0	2
60	The 1st Euro-Mediterranean Workshop: Natural Products in Health and Diseases: Cairo, Egypt, March 2, 2015. Asian Journal of Pharmaceutical Sciences, 2016, 11, 292-296.	9.1	1
61	Editorial Introduction for Special Section. Cytokine, 2015, 75, v-ix.	3.2	0