Mathias Woydt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2681435/publications.pdf

Version: 2024-02-01

567281 552781 57 791 15 26 citations h-index g-index papers 62 62 62 605 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	The history of the Stribeck curve and ball bearing steels: The role of Adolf Martens. Wear, 2010, 268, 1542-1546.	3.1	70
2	Tribological characteristics of polycrystalline Magn \tilde{A} ©li-type titanium dioxides. Tribology Letters, 2000, 8, 117-130.	2.6	63
3	The tribological and mechanical properties of niobium carbides (NbC) bonded with cobalt or Fe3Al. Wear, 2014, 321, 1-7.	3.1	62
4	The use of niobium carbide (NbC) as cutting tools and for wear resistant tribosystems. International Journal of Refractory Metals and Hard Materials, 2015, 49, 212-218.	3.8	49
5	Niobium carbide for wear protection – tailoring its properties by processing and stoichiometry. Metal Powder Report, 2016, 71, 265-272.	0.1	47
6	Biolubricants and triboreactive materials for automotive applications. Tribology International, 2009, 42, 561-568.	5.9	39
7	Friction and wear of binder-less niobium carbide. Wear, 2013, 306, 126-130.	3.1	38
8	Comparison of self-mated hardmetal coatings under dry sliding conditions up to 600°C. Wear, 2009, 266, 406-416.	3.1	32
9	The Economic and Environmental Significance of Sustainable Lubricants. Lubricants, 2021, 9, 21.	2.9	30
10	Tribology meets sustainability. Industrial Lubrication and Tribology, 2021, 73, 430-435.	1.3	28
11	Testing the tribological properties of lubricants and materials for the system "piston ring/cylinder liner―outside of engines. Industrial Lubrication and Tribology, 2003, 55, 213-222.	1.3	24
12	Contact mechanics and tribology of polymer composites. Journal of Applied Polymer Science, 2014, 131,	2.6	20
13	Global Insights on Future Trends of Hybrid/EV Driveline Lubrication and Thermal Management. Frontiers in Mechanical Engineering, 2020, 6, .	1.8	19
14	Switching adhesion forces by crossing the metal–insulator transition in Magnéli-type vanadium oxide crystals. Beilstein Journal of Nanotechnology, 2011, 2, 59-65.	2.8	17
15	Zirconium-based coatings in highly stressed rolling contacts as alternative solution to DLC and ta-C coatings. Wear, 2010, 269, 770-781.	3.1	16
16	No/Low SAP and Alternative Engine Oil Development and Testing. Journal of ASTM International, 2007, 4, 100898.	0.2	15
17	Testing friction and wear of the tribosystem piston ring and cylinder liner outside of engines. TriboTest Journal: Tribology and Lubrication in Practice, 2008, 14, 113-126.	0.7	14
18	Effect of Carbon Content on the Microstructure and Mechanical Properties of NbC-Ni Based Cermets. Metals, 2018, 8, 178.	2.3	14

#	Article	IF	CITATIONS
19	Slip-rolling resistance of thin films and high toughness steel substrates under high Hertzian contact pressures. Wear, 2011, 270, 506-514.	3.1	13
20	Optimization of pre-conditioned cold work hardening of steel alloys for friction and wear reductions under slip-rolling contact. Wear, 2016, 350-351, 141-154.	3.1	11
21	Abrasive wear behavior of austempered ductile iron with niobium additions. Wear, 2019, 440-441, 203065.	3.1	11
22	Validation of Oxidative Stability of Factory Fill and Alternative Engine Oils Using the Iron Catalyzed Oxidation Test. Journal of ASTM International, 2007, 4, 100938.	0.2	11
23	Triboactive materials for dry reciprocating sliding motion at ultra-high frequency. Wear, 2009, 266, 167-174.	3.1	10
24	Comparison of slip-rolling behaviour between 20MnCr5 gear steel, 36NiCrMoV1-5-7 hot working tool steel and 45SiCrMo6 spring steel. Wear, 2015, 328-329, 28-38.	3.1	10
25	Friction and wear reductions under slip-rolling contact through chemically reactive tribofilm generation during pre-conditioning of steel alloys. Wear, 2015, 338-339, 133-143.	3.1	10
26	Friction and wear reductions in slip-rolling steel contacts through pre-conditioned chemical tribofilms from bismuth compounds. Wear, 2016, 360-361, 29-37.	3.1	10
27	Test Modes for Establishing the Tribological Profile under Slip-Rolling. Lubricants, 2020, 8, 59.	2.9	9
28	Polyalkylene Glycols as Next Generation Engine Oils. Journal of ASTM International, 2011, 8, 1-15.	0.2	8
29	New Methodologies Indicating Adhesive Wear in Load Step Tests on the Translatory Oscillation Tribometer. Lubricants, 2021, 9, 101.	2.9	8
30	Dry friction and wear rates as under liquid lubrication of ceramic/carbon couples up to 450°C. Industrial Lubrication and Tribology, 2004, 56, 38-51.	1.3	7
31	Slip-Rolling Resistance of Alternative Steels Under High Contact Pressures in Engine Oils. , 2014, , 1-29.		7
32	The Effects of Energy Efficiency and Resource Consumption on Environmental Sustainability. Lubricants, 2021, 9, 117.	2.9	7
33	Prediction of Tribological Limits in Sliding Contacts: Flash Temperature Calculations in Sliding Contacts and Material Behavior. Journal of Tribology, 2016, 138, .	1.9	6
34	Slip-Rolling Resistance and Load Carrying Capacity of 36NiCrMoV1-5-7 Steel. Materials Performance and Characterization, 2014, 3, 20130022.	0.3	6
35	An Alternative Approach to Simulating an Entire Particle Erosion Experiment. Lubricants, 2018, 6, 29.	2.9	5
36	Rolling Contact Fatigue Tests of Ceramics by Various Methods: Comparison of Suitability to the Evaluation of Silicon Nitrides. Journal of Testing and Evaluation, 2016, 44, 1271-1283.	0.7	5

#	Article	lF	Citations
37	Influence of test parameters on tribological measurements - results from international round robin tests. TriboTest Journal: Tribology and Lubrication in Practice, 2003, 10, 59-76.	0.7	4
38	Low friction slip-rolling contacts—influences of alternative steels, high performance thin film coatings and lubricants. , 2014, , 127-138.		4
39	Tribological Testing and Presentation of Data. , 2017, , 16-32.		4
40	High Temperature Tribology under Linear Oscillation Motion. Lubricants, 2021, 9, 5.	2.9	4
41	Wear behaviour of α-alumina in hot steam at high contact pressure. Wear, 2018, 404-405, 22-30.	3.1	3
42	Zero wear concept using bionotox and polymerâ€free engine oils with triboactive materials. Industrial Lubrication and Tribology, 2008, 60, 14-23.	1.3	2
43	Grease. Lubricants, 2022, 10, 45.	2.9	2
44	Oil Free Machinery and "Zero Wear― Dream or Reality?. Tribology Online, 2011, 6, 101-112.	0.9	1
45	Lubricities of Environmentally Acceptable Lubricants with Zinc Dialkyldithiophosphate and Dibenzyl Disulfide on Tribological Properties of Plasma Electrolytic Oxidation Coated A6061-T6 Alloy under Mixed/Boundary Lubrication. Tribology Online, 2015, 10, 56-63.	0.9	1
46	Closure to "Discussion of  Prediction of Tribological Limits in Sliding Contacts: Flash Temperature Calculations in Sliding Contacts and Material Behavior'―(2017, ASME J. Tribol., 139(4), p. 045501). Journal of Tribology, 2017, 139, .	1.9	1
47	CO2-Neutral Fuels and Lubricants Based on Second Generation Oils such as Jatropha. Journal of ASTM International, 2010, 7, 1-12.	0.2	1
48	Polyalkylene Glycols as Next Generation Engine Oils. , 2012, , 25-46.		1
49	NIOBIUM CARBIDE (NbC) AS WEAR RESISTANT HARDMETAL IN OPENED AND CLOSED TRIBOSYSTEMS., 0, , .		1
50	Niobium Carbide - An Innovative and Sustainable High-Performance Material for Tooling, Friction and Wear Applications., 0,, 67-80.		0
51	Corrosion and Its Impact on Wear Processes. , 2004, , .		0
52	Polyalkylene Glycols as Next Generation Engine Oils. , 2012, , 25-46.		0
53	Benchmark of Alternative Lubricants for Hydraulic Systems. , 2014, , 52-75.		0
54	Generation of Defined Tribofilms and Their Stability under Slip-Rolling in a 2Disk Test Rig. Materials Performance and Characterization, 2018, 7, 213-225.	0.3	0

#	Article	IF	CITATIONS
55	Chapter 20 Automotive Engine Lubricants. , 2019, , 753-863.		O
56	Hydrodynamic Fluid Film and Tribofilm Formation—Combining the Friction Signals with Contact Resistance. Materials Performance and Characterization, 2020, 9, 20190261.	0.3	0
57	No/Low SAP and Alternative Engine Oil Development and Testing. , 0, , 35-35-13.		O