
Mohammad Khodaei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2681367/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Preparation and <i>in vitro</i> characterization of electrospun scaffolds composed of chitosan, gelatin and 58S bioactive glass nanoparticles for skin tissue engineering. Journal of Shahrekord University of Medical Sciences, 2022, 24, 1-6.	0.1	2
2	Evaluation the Properties of Polycaprolactone/Fluorapatite Nano-biocomposite. Journal of Bionic Engineering, 2022, 19, 179-187.	2.7	4
3	Comparative evaluation of three nanofilled resin-based dental composites: Cytotoxicity, surface roughness, and flexural properties. Polymers and Polymer Composites, 2022, 30, 096739112210875.	1.0	2
4	Electrosprayed cefazolinâ€loaded niosomes onto electrospun chitosan nanofibrous membrane for wound healing applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 1814-1826.	1.6	22
5	Effect of post heat treatment on surface properties of hydrogen peroxide (H2O2) treated titanium. Journal of Materials Research and Technology, 2022, 18, 584-590.	2.6	1
6	Electro-conductive 3D printed polycaprolactone/gold nanoparticles nanocomposite scaffolds for myocardial tissue engineering. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 132, 105271.	1.5	17
7	Evaluating the effects of vacuum on the microstructure and biocompatibility of bovine decellularized pericardium. Journal of Tissue Engineering and Regenerative Medicine, 2021, 15, 116-128.	1.3	17
8	Stem cell-based therapeutic strategies for corneal epithelium regeneration. Tissue and Cell, 2021, 68, 101470.	1.0	20
9	The in-vitro biological properties of 3D printed poly lactic acid/akermanite composite porous scaffold for bone tissue engineering. Materials Today Communications, 2021, 27, 102176.	0.9	10
10	A novel coating layer on zirconia using modified zinc phosphatizing method. Dental Materials Journal, 2021, 40, 870-876.	0.8	0
11	Angiogenic Potential of Adipose-Derived Stem Cells and the Possibility of Their Use for Skin Regeneration. Cell and Tissue Biology, 2021, 15, 409-415.	0.2	2
12	Nanocomposite scaffolds for accelerating chronic wound healing by enhancing angiogenesis. Journal of Nanobiotechnology, 2021, 19, 1.	4.2	382
13	Cationic, anionic and neutral polysaccharides for skin tissue engineering and wound healing applications. International Journal of Biological Macromolecules, 2021, 192, 298-322.	3.6	75
14	Optimum temperature and chlorine ion concentration for hydrogen peroxide treatment of titanium dental implant material. Journal of Materials Research and Technology, 2020, 9, 13312-13319.	2.6	5
15	Surface treatment of titanium dental implant with H2O2 solution. International Journal of Minerals, Metallurgy and Materials, 2020, 27, 1281-1286.	2.4	10
16	Poly lactic acid-akermanite composite scaffolds prepared by fused filament fabrication for bone tissue engineering. Journal of Materials Research and Technology, 2020, 9, 14540-14548.	2.6	18
17	Magnesium/Nano-hydroxyapatite Composite for Bone Reconstruction: The Effect of Processing Method. Journal of Bionic Engineering, 2020, 17, 92-99.	2.7	11
18	Fabrication and Characterization of Poly Lactic Acid Scaffolds by Fused Deposition Modeling for Bone Tissue Engineering. Journal Wuhan University of Technology, Materials Science Edition, 2020, 35, 248-251.	0.4	21

Mohammad Khodaei

#	Article	IF	CITATIONS
19	Magnesium scaffolds with two novel biomimetic designs and MgF2 coating for bone tissue engineering. Surface and Coatings Technology, 2020, 395, 125929.	2.2	17
20	Preparation and characterization of poly(ethylene oxide)/zinc oxide nanofibrous scaffold for chronic wound healing applications. Polimery W Medycynie, 2020, 50, 41-51.	0.6	18
21	Characterization of the decellularized ovine pericardium for skin tissue engineering. Journal of Shahrekord University of Medical Sciences, 2020, 22, 173-180.	0.1	5
22	Bioactive Materials: A Comprehensive Review on Interactions with Biological Microenvironment Based on the Immune Response. Journal of Bionic Engineering, 2019, 16, 563-581.	2.7	39
23	A review of accelerated wound healing approaches: biomaterial- assisted tissue remodeling. Journal of Materials Science: Materials in Medicine, 2019, 30, 120.	1.7	74
24	Porous titanium scaffold coated using forsterite/poly-3-hydroxybutyrate composite for bone tissue engineering. Surface and Coatings Technology, 2019, 378, 124942.	2.2	20
25	The effect of the nano- bioglass reinforcement on magnesium based composite. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 100, 103396.	1.5	12
26	Magnesium/nano-hydroxyapatite porous biodegradable composite for biomedical applications. Materials Research Express, 2019, 6, 075408.	0.8	20
27	Fabrication and characterization of nHA/titanium dental implant. Materials Research Express, 2019, 6, 045060.	0.8	10
28	Effect of Oxidizing Atmosphere on the Surface of Titanium Dental Implant Material. Journal of Bionic Engineering, 2019, 16, 1052-1060.	2.7	5
29	The Effect of Vacuum Leak Rate on Sintering of Porous Titanium Scaffold. E-Journal of Surface Science and Nanotechnology, 2019, 17, 184-188.	0.1	0
30	Diffusion bonding of aluminum-magnesium using cold rolled copper interlayer. Journal of Alloys and Compounds, 2019, 773, 838-843.	2.8	50
31	The effect of porosity on the mechanical properties of porous titanium scaffolds: comparative study on experimental and analytical values. Materials Research Express, 2018, 5, 055401.	0.8	13
32	Fabrication and characterization of magnesium scaffold using different processing parameters. Materials Research Express, 2018, 5, 035407.	0.8	15
33	Fabrication of Porous Mg-Zn Scaffold through Modified Replica Method for Bone Tissue Engineering. Journal of Bionic Engineering, 2018, 15, 907-913.	2.7	9
34	Fabrication and evaluation of amalgam/nano hydroxyapatite composites for dental restoration. Materials Research Express, 2018, 5, 105403.	0.8	1
35	The effect of different oxidizing ions on hydrogen peroxide treatment of titanium dental implant. Surface and Coatings Technology, 2018, 353, 158-162.	2.2	23
36	Surface and mechanical properties of modified porous titanium scaffold. Surface and Coatings Technology, 2017, 315, 61-66.	2.2	38

Mohammad Khodaei

#	Article	IF	CITATIONS
37	Controlled gentamicin- strontium release as a dual action bone agent: Combination of the porous titanium scaffold and biodegradable polymers. Journal of Alloys and Compounds, 2017, 720, 22-28.	2.8	15
38	The effect of pore structure on the mechanical properties of titanium scaffolds. Materials Letters, 2016, 171, 308-311.	1.3	25
39	The side effects of surface modification of porous titanium implant using hydrogen peroxide: Mechanical properties aspects. Materials Letters, 2016, 178, 201-204.	1.3	12
40	Surface modification of Ti6Al4 V implants by heat, H ₂ O ₂ and alkali treatments. Surface Engineering, 2016, 32, 786-793.	1.1	11
41	A thermal decomposition route for synthesis of silver ribbons. Russian Journal of Applied Chemistry, 2015, 88, 2035-2037.	0.1	1
42	Effect of spacer type and cold compaction pressure on structural and mechanical properties of porous titanium scaffold. Powder Metallurgy, 2015, 58, 152-160.	0.9	22
43	The effect of different melt treatments on alloying element distribution and mechanical properties of A356 aluminum alloy. Russian Journal of Non-Ferrous Metals, 2015, 56, 261-266.	0.2	1
44	Comparative evaluation of the effect of different types of surface modifiers on bioactivity of porous titanium implants. Russian Journal of Non-Ferrous Metals, 2015, 56, 469-476.	0.2	8
45	Pressure measurement and some observation in lost foam casting. Journal of Materials Processing Technology, 2008, 206, 1-6.	3.1	42