Catherine Pavoine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2681222/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transcriptomic and Lipidomic Mapping of Macrophages in the Hub of Chronic Beta-Adrenergic-Stimulation Unravels Hypertrophy-, Proliferation-, and Lipid Metabolism-Related Genes as Novel Potential Markers of Early Hypertrophy or Heart Failure. Biomedicines, 2022, 10, 221.	1.4	2
2	Early Protective Role of Inflammation in Cardiac Remodeling and Heart Failure: Focus on TNFα and Resident Macrophages. Cells, 2022, 11, 1249.	1.8	22
3	Plateletâ€Derived Growth Factor Receptor Type α Activation Drives Pulmonary Vascular Remodeling Via Progenitor Cell Proliferation and Induces Pulmonary Hypertension. Journal of the American Heart Association, 2022, 11, e023021.	1.6	5
4	The Platelet-Derived Growth Factor Pathway in Pulmonary Arterial Hypertension: Still an Interesting Target?. Life, 2022, 12, 658.	1.1	2
5	Early activation of the cardiac CX3CL1/CX3CR1 axis delays β-adrenergic-induced heart failure. Scientific Reports, 2021, 11, 17982.	1.6	6
6	Cardiac inflammatory CD11b/c cells exert a protective role in hypertrophied cardiomyocyte by promoting TNFR2- and Orai3- dependent signaling. Scientific Reports, 2019, 9, 6047.	1.6	15
7	Cardiac <i>Stim1</i> Silencing Impairs Adaptive Hypertrophy and Promotes Heart Failure Through Inactivation of mTORC2/Akt Signaling. Circulation, 2016, 133, 1458-1471.	1.6	84
8	Emergence of Orai3 activity during cardiac hypertrophy. Cardiovascular Research, 2015, 105, 248-259.	1.8	36
9	M2 Kupffer cells promote M1 Kupffer cell apoptosis: A protective mechanism against alcoholic and nonalcoholic fatty liver disease. Hepatology, 2014, 59, 130-142.	3.6	450
10	M2 Kupffer Cells Promote Hepatocyte Senescence. American Journal of Pathology, 2014, 184, 1763-1772.	1.9	51
11	Cannabinoid CB2 receptors protect against alcoholic liver disease by regulating Kupffer cell polarization in mice. Hepatology, 2011, 54, 1217-1226.	3.6	214
12	Delayed Cardiomyopathy in Dystrophin Deficient mdx Mice Relies on Intrinsic Glutathione Resource. American Journal of Pathology, 2010, 177, 1356-1364.	1.9	22
13	Glutathione Deficiency in Cardiac Patients Is Related to the Functional Status and Structural Cardiac Abnormalities. PLoS ONE, 2009, 4, e4871.	1.1	84
14	The cannabinoid receptor type 2 promotes cardiac myocyte and fibroblast survival and protects against ischemia/reperfusionâ€induced cardiomyopathy. FASEB Journal, 2009, 23, 2120-2130.	0.2	116
15	Sphingomyelinases: their regulation and roles in cardiovascular pathophysiology. Cardiovascular Research, 2009, 82, 175-183.	1.8	139
16	Structural Localization and Expression of CXCL12 and CXCR4 in Rat Heart and Isolated Cardiac Myocytes. Journal of Histochemistry and Cytochemistry, 2007, 55, 141-150.	1.3	37
17	TNFR1 and TNFR2 Signaling Interplay in Cardiac Myocytes. Journal of Biological Chemistry, 2007, 282, 35564-35573.	1.6	75
18	Neutral sphingomyelinase inhibition participates to the benefits of N-acetylcysteine treatment in post-myocardial infarction failing heart rats. Journal of Molecular and Cellular Cardiology, 2007, 43, 344-353.	0.9	70

CATHERINE PAVOINE

#	Article	IF	CITATIONS
19	Transcription of the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase typeÂ3 gene, ATP2A3, is regulated by the calcineurin/NFAT pathway in endothelial cells. Biochemical Journal, 2006, 394, 27-33.	1.7	30
20	The cardiac β2-adrenergic signalling a new role for the cPLA2. Cellular Signalling, 2005, 17, 141-152.	1.7	36
21	The Cytosolic Phospholipase A2 Pathway, a Safeguard of β2-Adrenergic Cardiac Effects in Rat. Journal of Biological Chemistry, 2005, 280, 18881-18890.	1.6	26
22	N -Acetylcysteine Prevents the Deleterious Effect of Tumor Necrosis Factor-α on Calcium Transients and Contraction in Adult Rat Cardiomyocytes. Circulation, 2004, 109, 406-411.	1.6	71
23	Calcium dynamics in cardiac myocytes: a model for drugs effect description. Simulation Modelling Practice and Theory, 2004, 12, 93-104.	2.2	0
24	β2-Adrenergic Signaling in Human Heart: Shift from the Cyclic AMP to the Arachidonic Acid Pathway. Molecular Pharmacology, 2003, 64, 1117-1125.	1.0	30
25	Arachidonic acid mediates dual effect of TNF-α on Ca ²⁺ transients and contraction of adult rat cardiomyocytes. American Journal of Physiology - Cell Physiology, 2002, 282, C1339-C1347.	2.1	66
26	Adult cardiac myocytes survive and remain excitable during long-term culture on synthetic supports. Journal of Thoracic and Cardiovascular Surgery, 2001, 121, 510-519.	0.4	17
27	β2-Adrenergic Receptor Agonists Increase Intracellular Free Ca2+ Concentration Cycling in Ventricular Cardiomyocytes through p38 and p42/44 MAPK-mediated Cytosolic Phospholipase A2 Activation. Journal of Biological Chemistry, 2001, 276, 39539-39548.	1.6	34
28	Biological Effects of C-type Natriuretic Peptide in Human Myofibroblastic Hepatic Stellate Cells. Journal of Biological Chemistry, 1999, 274, 23761-23769.	1.6	56
29	Evidence for a β2-Adrenergic/Arachidonic Acid Pathway in Ventricular Cardiomyocytes. Journal of Biological Chemistry, 1999, 274, 628-637.	1.6	61
30	Pharmacological and molecular characterisation of β-adrenoceptors in adult rat diaphragm muscle. Respiration Physiology, 1998, 112, 1-12.	2.8	13
31	Arachidonic Acid Drives Mini-glucagon Action in Cardiac Cells. Journal of Biological Chemistry, 1997, 272, 12437-12445.	1.6	23
32	Synergistic Actions of Glucagon and Miniglucagon on Ca ²⁺ Mobilization in Cardiac Cells. Circulation Research, 1996, 78, 102-109.	2.0	29
33	EHNA as an Inhibitor of PDE2: A Pharmacological and Biochemical Study in Cardiac Myocytes. , 1996, , 81-88.		0
34	Glucagon stimulates the cardiac Ca2+ current by activation of adenylyl cyclase and inhibition of phosphodiesterase. Nature, 1990, 345, 158-161.	13.7	108
35	Hormonal Inhibition of the Liver Plasma Membrane (Ca2+ —Mg2+) ATPase is Mediated by a Gs-like Protein. , 1989, , 3-11		0
36	Regulation of Liver Plasma Membrane Ca2+ Pump. Advances in Experimental Medicine and Biology, 1988, 232, 69-82.	0.8	2

#	Article	IF	CITATIONS
37	A glucagon fragment is responsible for the inhibition of the liver Ca2+ pump by glucagon. Nature, 1987, 325, 620-622.	13.7	94
38	The liver plasma membrane Ca2+ pump: Hormonal sensitivity. Biochimie, 1985, 67, 1169-1176.	1.3	12