Han Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2680885/publications.pdf

Version: 2024-02-01

687363 580821 25 27 648 13 citations h-index g-index papers 27 27 27 823 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Comparison of cytotoxic and inflammatory responses of pristine and functionalized multi-walled carbon nanotubes in RAW 264.7 mouse macrophages. Journal of Hazardous Materials, 2012, 219-220, 203-212.	12.4	81
2	Separation of Specific Single-Enantiomer Single-Wall Carbon Nanotubes in the Large-Diameter Regime. ACS Nano, 2020, 14, 948-963.	14.6	75
3	Separation of Small-Diameter Single-Walled Carbon Nanotubes in One to Three Steps with Aqueous Two-Phase Extraction. ACS Nano, 2019, 13, 2567-2578.	14.6	61
4	Carbon Nanotubes for Photovoltaics: From Lab to Industry. Advanced Energy Materials, 2021, 11, 2002880.	19.5	59
5	Sensing with Chirality-Pure Near-Infrared Fluorescent Carbon Nanotubes. Analytical Chemistry, 2021, 93, 6446-6455.	6.5	45
6	Systemic and immunotoxicity of pristine and PEGylated multi-walled carbon nanotubes in an intravenous 28 days repeated dose toxicity study. International Journal of Nanomedicine, 2017, Volume 12, 1539-1554.	6.7	39
7	Surface modification of multiwall carbon nanotubes determines the pro-inflammatory outcome in macrophage. Journal of Hazardous Materials, 2015, 284, 73-82.	12.4	38
8	Front and Backâ€Junction Carbon Nanotubeâ€Silicon Solar Cells with an Industrial Architecture. Advanced Functional Materials, 2020, 30, 2000484.	14.9	33
9	Inner- and outer-wall sorting of double-walled carbon nanotubes. Nature Nanotechnology, 2017, 12, 1176-1182.	31.5	32
10	A Polymer/Carbonâ€Nanotube Ink as a Boronâ€Dopant/Inorganicâ€Passivation Free Carrier Selective Contact for Silicon Solar Cells with over 21% Efficiency. Advanced Functional Materials, 2020, 30, 2004476.	14.9	29
11	Dynamical Contact Line Pinning and Zipping during Carbon Nanotube Coffee Stain Formation. ACS Nano, 2014, 8, 6417-6424.	14.6	28
12	Detection and Imaging of the Plant Pathogen Response by Nearâ€Infrared Fluorescent Polyphenol Sensors. Angewandte Chemie - International Edition, 2022, 61, .	13.8	27
13	Low-Temperature Electroluminescence Excitation Mapping of Excitons and Trions in Short-Channel Monochiral Carbon Nanotube Devices. ACS Nano, 2020, 14, 2709-2717.	14.6	19
14	Stable Organic Passivated Carbon Nanotube–Silicon Solar Cells with an Efficiency of 22%. Advanced Science, 2021, 8, e2102027.	11.2	12
15	InÂvivo evaluation of acute toxicity of water-soluble carbon nanotubes. Toxicological and Environmental Chemistry, 2011, 93, 603-615.	1.2	11
16	Effect of Singleâ€walled Carbon Nanotube (SWCNT) Composition on Polyfluoreneâ€Based SWCNT Dispersion Selectivity. Chemistry - A European Journal, 2018, 24, 9799-9806.	3.3	11
17	Global Alignment of Carbon Nanotubes via High Precision Microfluidic Deadâ€End Filtration. Advanced Functional Materials, 2022, 32, 2107411.	14.9	10
18	Charge Transfer from Photoexcited Semiconducting Single-Walled Carbon Nanotubes to Wide-Bandgap Wrapping Polymer. Journal of Physical Chemistry C, 2021, 125, 8125-8136.	3.1	9

#	Article	IF	CITATIONS
19	Moir $ ilde{A}$ ©-Induced Vibrational Coupling in Double-Walled Carbon Nanotubes. Nano Letters, 2021, 21, 6732-6739.	9.1	9
20	Endohedral Filling Effects in Sorted and Polymer-Wrapped Single-Wall Carbon Nanotubes. Journal of Physical Chemistry C, 2021, 125, 7476-7487.	3.1	8
21	Ferroelectric-like organic–inorganic interfaces. Journal of Materials Chemistry C, 2020, 8, 15677-15684.	5.5	4
22	Solution processable in situ passivated silicon nanowires. Nanoscale, 2021, 13, 11439-11445.	5.6	3
23	Detection and imaging of the plant pathogen response by near infrared fluorescent polyphenol sensors. Angewandte Chemie, 0, , .	2.0	2
24	Frontispiece: Effect of Singleâ€walled Carbon Nanotube (SWCNT) Composition on Polyfluoreneâ€Based SWCNT Dispersion Selectivity. Chemistry - A European Journal, 2018, 24, .	3.3	1
25	Frontispiece: Detection and Imaging of the Plant Pathogen Response by Nearâ€Infrared Fluorescent Polyphenol Sensors. Angewandte Chemie - International Edition, 2022, 61, .	13.8	1
26	Diameter-dependent single- and double-file stacking of squaraine dye molecules inside chirality-sorted single-wall carbon nanotubes. Nanoscale, 2022, 14, 8385-8397.	5.6	1
27	Frontispiz: Detektion und Visualisierung der Pflanzenâ€Pathogenâ€Response durch Nahâ€Infrarotâ€fluoreszente Polyphenolsensoren. Angewandte Chemie, 2022, 134, .	2.0	0