
Frank Alexis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2680859/publications.pdf Version: 2024-02-01

FDANK ALEVIS

#	Article	lF	CITATIONS
1	Factors Affecting the Clearance and Biodistribution of Polymeric Nanoparticles. Molecular Pharmaceutics, 2008, 5, 505-515.	2.3	2,993
2	Self-Assembled Lipidâ^'Polymer Hybrid Nanoparticles: A Robust Drug Delivery Platform. ACS Nano, 2008, 2, 1696-1702.	7.3	851
3	Targeted nanoparticles for cancer therapy. Nano Today, 2007, 2, 14-21.	6.2	431
4	Nanotechnology for Environmental Remediation: Materials and Applications. Molecules, 2018, 23, 1760.	1.7	418
5	Factors affecting the degradation and drug-release mechanism of poly(lactic acid) and poly[(lactic) Tj ETQq1 1	0.784314 1.6	rgBT_/Overloc
6	Stimulus responsive nanogels for drug delivery. Soft Matter, 2011, 7, 5908.	1.2	328
7	Transepithelial Transport of Fc-Targeted Nanoparticles by the Neonatal Fc Receptor for Oral Delivery. Science Translational Medicine, 2013, 5, 213ra167.	5.8	326
8	Superparamagnetic Iron Oxide Nanoparticle–Aptamer Bioconjugates for Combined Prostate Cancer Imaging and Therapy. ChemMedChem, 2008, 3, 1311-1315.	1.6	297
9	New frontiers in nanotechnology for cancer treatment. Urologic Oncology: Seminars and Original Investigations, 2008, 26, 74-85.	0.8	274
10	Nanoparticle Technologies for Cancer Therapy. Handbook of Experimental Pharmacology, 2010, , 55-86.	0.9	262
11	Co-Delivery of Hydrophobic and Hydrophilic Drugs from Nanoparticle–Aptamer Bioconjugates. ChemMedChem, 2007, 2, 1268-1271.	1.6	245
12	Polymeric nanoparticle drug delivery technologies for oral delivery applications. Expert Opinion on Drug Delivery, 2015, 12, 1459-1473.	2.4	206
13	Engineering of Targeted Nanoparticles for Cancer Therapy Using Internalizing Aptamers Isolated by Cell-Uptake Selection. ACS Nano, 2012, 6, 696-704.	7.3	148
14	Adjuvant-carrying synthetic vaccine particles augment the immune response to encapsulated antigen and exhibit strong local immune activation without inducing systemic cytokine release. Vaccine, 2014, 32, 2882-2895.	1.7	144
15	HERâ€⊋â€Targeted Nanoparticle–Affibody Bioconjugates for Cancer Therapy. ChemMedChem, 2008, 3, 1839-1843.	1.6	143
16	Polymeric Nanoparticle Technologies for Oral Drug Delivery. Clinical Gastroenterology and Hepatology, 2014, 12, 1605-1610.	2.4	122
17	In vitro study of release mechanisms of paclitaxel and rapamycin from drug-incorporated biodegradable stent matrices. Journal of Controlled Release, 2004, 98, 67-74.	4.8	121
18	Monitoring pH-Triggered Drug Release from Radioluminescent Nanocapsules with X-ray Excited Optical Luminescence. ACS Nano, 2013, 7, 1178-1187.	7.3	110

#	Article	IF	CITATIONS
19	Rapid Removal of Poly- and Perfluorinated Alkyl Substances by Poly(ethylenimine)-Functionalized Cellulose Microcrystals at Environmentally Relevant Conditions. Environmental Science and Technology Letters, 2018, 5, 764-769.	3.9	99
20	Iron-Loaded Magnetic Nanocapsules for pH-Triggered Drug Release and MRI Imaging. Chemistry of Materials, 2014, 26, 2105-2112.	3.2	78
21	Magnetic and optical properties of multifunctional core–shell radioluminescence nanoparticles. Journal of Materials Chemistry, 2012, 22, 12802.	6.7	71
22	Graphene coatings for enhanced hemo-compatibility of nitinol stents. RSC Advances, 2013, 3, 1660-1665.	1.7	71
23	Synthesis of Brightly PEGylated Luminescent Magnetic Upconversion Nanophosphors for Deep Tissue and Dual MRI Imaging. Small, 2014, 10, 160-168.	5.2	61
24	Multifunctional Polymerâ€Coated Carbon Nanotubes for Safe Drug Delivery. Particle and Particle Systems Characterization, 2013, 30, 365-373.	1.2	56
25	Janus magnetic cellular spheroids for vascular tissue engineering. Biomaterials, 2014, 35, 949-960.	5.7	55
26	Biological magnetic cellular spheroids as building blocks for tissue engineering. Acta Biomaterialia, 2014, 10, 623-629.	4.1	54
27	Some insight into hydrolytic scission mechanisms in bioerodible polyesters. Journal of Applied Polymer Science, 2006, 102, 3111-3117.	1.3	48
28	Nanotechnologies for Noninvasive Measurement of Drug Release. Molecular Pharmaceutics, 2014, 11, 24-39.	2.3	43
29	Persistent organic pollutants: The trade-off between potential risks and sustainable remediation methods. Journal of Environmental Management, 2021, 300, 113737.	3.8	38
30	Systemic Administration of Polymerâ€Coated Nanoâ€Graphene to Deliver Drugs to Glioblastoma. Particle and Particle Systems Characterization, 2014, 31, 886-894.	1.2	36
31	Targetâ€5pecific Capture of Environmentally Relevant Gaseous Aldehydes and Carboxylic Acids with Functional Nanoparticles. Chemistry - A European Journal, 2015, 21, 14834-14842.	1.7	35
32	Targeted magnetic hyperthermia. Therapeutic Delivery, 2011, 2, 815-838.	1.2	33
33	Multifunctional Yolkâ€inâ€Shell Nanoparticles for pHâ€ŧriggered Drug Release and Imaging. Small, 2014, 10, 3364-3370.	5.2	33
34	Multilayered Polymer-Coated Carbon Nanotubes To Deliver Dasatinib. Molecular Pharmaceutics, 2014, 11, 276-282.	2.3	32
35	Capture of Aldehyde VOCs Using a Series of Amineâ€Functionalized Cellulose Nanocrystals. ChemistrySelect, 2018, 3, 5495-5501.	0.7	29
36	Recent Advances in Polyesters for Biomedical Imaging. Advanced Healthcare Materials, 2018, 7, e1800798.	3.9	25

#	Article	IF	CITATIONS
37	Periodic mesoporous organosilica nanomaterials for rapid capture of VOCs. Chemical Communications, 2020, 56, 607-610.	2.2	25
38	Tunable Properties of Functional Nanoparticles for Efficient Capture of VOCs. ChemistrySelect, 2017, 2, 9889-9894.	0.7	24
39	Poly(amine) modified kaolinite clay for VOC capture. Chemosphere, 2018, 213, 19-24.	4.2	23
40	Lycopene used as Anti-inflammatory Nanodrug for the Treatment of Rheumathoid Arthritis: Animal assay, Pharmacokinetics, ABC Transporter and Tissue Deposition. Colloids and Surfaces B: Biointerfaces, 2020, 188, 110814.	2.5	23
41	A Survey of VOC Emissions from Rendering Plants. Aerosol and Air Quality Research, 2017, 17, 209-217.	0.9	23
42	Non-invasive deep tissue imaging of iodine modified poly(caprolactone-co-1-4-oxepan-1,5-dione) using X-ray. Acta Biomaterialia, 2015, 20, 94-103.	4.1	20
43	Graphene Coatings for Biomedical Implants. Journal of Visualized Experiments, 2013, , e50276.	0.2	19
44	Degradation of pesticides using amine-functionalized cellulose nanocrystals. RSC Advances, 2020, 10, 44312-44322.	1.7	19
45	Natural Biomaterials from Biodiversity for Healthcare Applications. Advanced Healthcare Materials, 2022, 11, e2101389.	3.9	19
46	Accelerated Iron Oxide Nanoparticle Degradation Mediated by Polyester Encapsulation within Cellular Spheroids. Advanced Functional Materials, 2014, 24, 800-807.	7.8	17
47	Polymer oated Radioluminescent Nanoparticles for Quantitative Imaging of Drug Delivery. Advanced Functional Materials, 2014, 24, 5815-5823.	7.8	17
48	Bright X-ray and up-conversion nanophosphors annealed using encapsulated sintering agents for bioimaging applications. Journal of Materials Chemistry B, 2017, 5, 5412-5424.	2.9	17
49	EFFECTS OF POLYMERIC NANOPARTICLE SURFACE PROPERTIES ON INTERACTION WITH BRAIN TUMOR ENVIRONMENT. Nano LIFE, 2013, 03, 1343003.	0.6	16
50	Iron Oxide Nanoparticles Stimulates Extra-Cellular Matrix Production in Cellular Spheroids. Bioengineering, 2017, 4, 4.	1.6	16
51	Natural Cellulose Fibers for Surgical Suture Applications. Polymers, 2020, 12, 3042.	2.0	16
52	Molecular and Cellular Risk Assessment of Healthy Human Cells and Cancer Human Cells Exposed to Nanoparticles. International Journal of Molecular Sciences, 2020, 21, 230.	1.8	16
53	Nanostructured and Photochromic Material for Environmental Detection of Metal Ions. Molecules, 2019, 24, 4243.	1.7	13
54	Oxime functionalization strategy for iodinated poly(epsilon-caprolactone) X-ray opaque materials. Journal of Polymer Science Part A, 2015, 53, 2421-2430.	2.5	12

#	Article	IF	CITATIONS
55	Radioactive gold nanocluster (198-AuNCs) showed inhibitory effects on cancer cells lines. Artificial Cells, Nanomedicine and Biotechnology, 2020, 48, 1214-1221.	1.9	12
56	Cellulose particles capture aldehyde VOC pollutants. RSC Advances, 2020, 10, 7967-7975.	1.7	12
57	In Situ Photopolymerization of Acrylamide Hydrogel to Coat Cellulose Acetate Nanofibers for Drug Delivery System. Polymers, 2021, 13, 1863.	2.0	12
58	Nano-Polypharmacy to Treat Tumors: Coencapsulation of Drug Combinations Using Nanoparticle Technology. Molecular Therapy, 2014, 22, 1239-1240.	3.7	11
59	Functionalized nanoparticles containing MKPâ€1 agonists reduce periodontal bone loss. Journal of Periodontology, 2019, 90, 894-902.	1.7	11
60	Iodinated Polyesters with Enhanced X-ray Contrast Properties for Biomedical Imaging. Scientific Reports, 2020, 10, 1508.	1.6	11
61	Processing cellular spheroids for histological examination. Journal of Histotechnology, 2014, 37, 138-142.	0.2	10
62	Polytetrafluoroethylene-like Nanoparticles as a Promising Contrast Agent for Dual Modal Ultrasound and X-ray Bioimaging. ACS Biomaterials Science and Engineering, 2021, 7, 1181-1191.	2.6	9
63	Microcrystalline Cellulose Extracted from Native Plants as an Excipient for Solid Dosage Formulations in Drug Delivery. Nanomaterials, 2020, 10, 975.	1.9	8
64	Theranostic nanotechnologies: moving beyond imaging drug localization?. Therapeutic Delivery, 2014, 5, 97-100.	1.2	7
65	Longitudinal Stretching for Maturation of Vascular Tissues Using Magnetic Forces. Bioengineering, 2016, 3, 29.	1.6	7
66	Synthesis and conjugation of a triiodohydroxylamine for the preparation of highly Xâ€ray opaque poly(εâ€caprolactone) materials. Journal of Polymer Science Part A, 2017, 55, 787-793.	2.5	7
67	Polymer-Scaffolded Synthesis of Periodic Mesoporous Organosilica Nanomaterials for Delivery Systems in Cancer Cells. ACS Biomaterials Science and Engineering, 2020, 6, 6671-6679.	2.6	5
68	In situ preparation of gold–polyester nanoparticles for biomedical imaging. Biomaterials Science, 2020, 8, 3032-3043.	2.6	5
69	Frequency Based Control of Antifouling Properties Using Graphene Nanoplatelet/Poly(Lactic-co-Glycolic Acid) Composite Films. Composite Interfaces, 0, , 1-17.	1.3	5
70	Controllable Design of Naked and Poly(Amine)-Capped Porous and Nonporous Microparticles of Sustainable Polymers That Exhibit Dual Modalities for Volatile Organic Compound Adsorption. ACS Applied Polymer Materials, 2019, 1, 3459-3469.	2.0	2
71	Distinct Methodologies to Produce Capped Mesoporous Silica with Hydroxyapatite and the Influence in Intracellular Signaling as Cytotoxicity on Human Umbilical Vein Endothelial Cells. Bioengineering, 2021, 8, 125.	1.6	2
72	Scaled Synthesis of Polyamine-Modified Cellulose Nanocrystals from Bulk Cotton and Their Use for Capturing Volatile Organic Compounds. Polymers, 2021, 13, 3060.	2.0	2

#	Article	IF	CITATIONS
73	Bimodal Ultrasound and X-ray Bioimaging Properties of Particulate Calcium Fluoride Biomaterial. Molecules, 2021, 26, 5447.	1.7	1
74	A Closer Look to Polyesters: Properties, Synthesis, Characterization, and Particle Drug Delivery Applications. Nanoscience and Nanotechnology - Asia, 2021, 11, .	0.3	1
75	Theranostics: Polymer-Coated Radioluminescent Nanoparticles for Quantitative Imaging of Drug Delivery (Adv. Funct. Mater. 37/2014). Advanced Functional Materials, 2014, 24, 5814-5814.	7.8	Ο
76	Bioeconomy in Ecuador. Revista Bionatura, 2018, 3, .	0.1	0