Wenbing Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2680736/publications.pdf Version: 2024-02-01

WENRING YANG

#	Article	IF	CITATIONS
1	Universal scaling relationship for atomic layer etching. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, 010401.	0.9	12
2	Predicting synergy in atomic layer etching. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, .	0.9	90
3	Atomic layer etching of GaN and AlGaN using directional plasma-enhanced approach. Japanese Journal of Applied Physics, 2017, 56, 06HB06.	0.8	44
4	Highly Selective Directional Atomic Layer Etching of Silicon. ECS Journal of Solid State Science and Technology, 2015, 4, N5010-N5012.	0.9	37
5	Benign Solutions and Innovative Sequential Annealing Processes for High Performance Cu ₂ ZnSn(Se,S) ₄ Photovoltaics. Advanced Energy Materials, 2014, 4, 1301287.	10.2	55
6	Facile single-component precursor for Cu2ZnSnS4 with enhanced phase and composition controllability. Energy and Environmental Science, 2014, 7, 998.	15.6	29
7	Spatial Element Distribution Control in a Fully Solution-Processed Nanocrystals-Based 8.6% Cu ₂ ZnSn(S,Se) ₄ Device. ACS Nano, 2014, 8, 9164-9172.	7.3	48
8	Growth mechanisms of coâ€evaporated kesterite: a comparison of Cuâ€rich and Znâ€rich composition paths. Progress in Photovoltaics: Research and Applications, 2014, 22, 35-43.	4.4	68
9	CZTS nanocrystals: a promising approach for next generation thin film photovoltaics. Energy and Environmental Science, 2013, 6, 2822.	15.6	309
10	Rational Defect Passivation of Cu ₂ ZnSn(S,Se) ₄ Photovoltaics with Solution-Processed Cu ₂ ZnSnS ₄ :Na Nanocrystals. Journal of the American Chemical Society, 2013, 135, 15998-16001.	6.6	142
11	The Role of Sulfur in Solutionâ€Processed Cu ₂ ZnSn(S,Se) ₄ and its Effect on Defect Properties. Advanced Functional Materials, 2013, 23, 1466-1471.	7.8	209
12	Molecular Solution Approach To Synthesize Electronic Quality Cu ₂ ZnSnS ₄ Thin Films. Journal of the American Chemical Society, 2013, 135, 6915-6920.	6.6	45
13	Nonâ€Hydrazine Solutions in Processing CuIn(S,Se) ₂ Photovoltaic Devices from Hydrazinium Precursors. Advanced Energy Materials, 2013, 3, 328-336.	10.2	22
14	Benign solution processed Cu <inf>2</inf> ZnSn(Se, S) <inf>4</inf> photovoltaic. , 2013, , .		0
15	Molecular precursor species and their effects on the energy band-gap of hydrazine solution processed Culn(S,Se) <inf>2</inf> films. , 2012, , .		0
16	Synthesis of bimetallic Pt-Pd core-shell nanocrystals and their high electrocatalytic activity modulated by Pd shell thickness. Nanoscale, 2012, 4, 845-851.	2.8	57
17	Novel Solution Processing of Highâ€Efficiency Earthâ€Abundant Cu ₂ ZnSn(S,Se) ₄ Solar Cells. Advanced Materials, 2012, 24, 6323-6329.	11.1	192
18	Reaction pathways for the formation of Cu2ZnSn(Se,S)4 absorber materials from liquid-phase hydrazine-based precursor inks. Energy and Environmental Science, 2012, 5, 8564.	15.6	54

WENBING YANG

#	Article	IF	CITATIONS
19	Novel solution processing of high efficiency earth abundant CZTSSe solar cells. , 2012, , .		2
20	The Development of Hydrazineâ€Processed Cu(In,Ga)(Se,S) ₂ Solar Cells. Advanced Energy Materials, 2012, 2, 504-522.	10.2	70
21	Cadmium ion soaking treatment and defect characterizations of hydrazine processed CISS photovoltaic cells. , 2011, , .		0
22	Identification of the Molecular Precursors for Hydrazine Solution Processed CuIn(Se,S) ₂ Films and Their Interactions. Chemistry of Materials, 2011, 23, 964-969.	3.2	52
23	Fused Silver Nanowires with Metal Oxide Nanoparticles and Organic Polymers for Highly Transparent Conductors. ACS Nano, 2011, 5, 9877-9882.	7.3	348
24	Cadmium ion soaking treatment for solution processed CuInSxSe2â^'x solar cells and its effect on defect properties. Solar Energy Materials and Solar Cells, 2011, 95, 2384-2389.	3.0	16