Wenbo Ding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2680705/publications.pdf

Version: 2024-02-01

53	3,981	218677	315739
papers	citations	h-index	g-index
53	53	53	3805
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Reprint of: Sensing beyond itself: Multi-functional use of ubiquitous signals towards wearable applications., 2022, 125, 103571.		O
2	Underwater wireless communication via TENG-generated Maxwellâ \in Ms displacement current. Nature Communications, 2022, 13, .	12.8	73
3	Planar Magnetic Actuation for Soft and Rigid Robots Using a Scalable Electromagnet Array. IEEE Robotics and Automation Letters, 2022, 7, 9264-9270.	5.1	4
4	HTPad: Hexagon-fractal TENG Pad for Scalable Touch Control., 2021,,.		0
5	Sensing beyond itself: Multi-functional use of ubiquitous signals towards wearable applications. , $2021,116,103091.$		13
6	An ultrathin rechargeable solid-state zinc ion fiber battery for electronic textiles. Science Advances, 2021, 7, eabl3742.	10.3	145
7	Smartphone-powered efficient water disinfection at the point of use. Npj Clean Water, 2020, 3, .	8.0	9
8	Alternating Current Photovoltaic Effect. Advanced Materials, 2020, 32, e1907249.	21.0	54
9	Triboelectric nanogenerators enabled internet of things: A survey. Intelligent and Converged Networks, 2020, 1, 115-141.	4.8	47
10	Boost the Performance of Triboelectric Nanogenerators through Circuit Oscillation. Advanced Energy Materials, 2019, 9, 1900772.	19.5	44
11	Sunlight‶riggerable Transient Energy Harvester and Sensors Based on Triboelectric Nanogenerator Using Acidâ€6ensitive Poly(phthalaldehyde). Advanced Electronic Materials, 2019, 5, 1900725.	5.1	15
12	A Hybridized Triboelectric–Electromagnetic Water Wave Energy Harvester Based on a Magnetic Sphere. ACS Nano, 2019, 13, 2349-2356.	14.6	92
13	Contact-Electrification between Two Identical Materials: Curvature Effect. ACS Nano, 2019, 13, 2034-2041.	14.6	78
14	TriboPump: A Lowâ€Cost, Handâ€Powered Water Disinfection System. Advanced Energy Materials, 2019, 9, 1901320.	19.5	74
15	Electrohydrodynamic Jet Printing Driven by a Triboelectric Nanogenerator. Advanced Functional Materials, 2019, 29, 1901102.	14.9	59
16	Human–Machine Interfacing Enabled by Triboelectric Nanogenerators and Tribotronics. Advanced Materials Technologies, 2019, 4, 1800487.	5.8	169
17	Triboelectric Nanogenerator: A Foundation of the Energy for the New Era. Advanced Energy Materials, 2019, 9, 1802906.	19.5	1,086
18	Field Emission of Electrons Powered by a Triboelectric Nanogenerator. Advanced Functional Materials, 2018, 28, 1800610.	14.9	44

#	Article	IF	CITATIONS
19	Vitrimer Elastomerâ€Based Jigsaw Puzzleâ€Like Healable Triboelectric Nanogenerator for Selfâ€Powered Wearable Electronics. Advanced Materials, 2018, 30, e1705918.	21.0	265
20	Complementary Electromagneticâ€Triboelectric Active Sensor for Detecting Multiple Mechanical Triggering. Advanced Functional Materials, 2018, 28, 1705808.	14.9	87
21	Shape Memory Polymers for Body Motion Energy Harvesting and Selfâ€Powered Mechanosensing. Advanced Materials, 2018, 30, 1705195.	21.0	249
22	A Hierarchically Nanostructured Cellulose Fiberâ€Based Triboelectric Nanogenerator for Selfâ€Powered Healthcare Products. Advanced Functional Materials, 2018, 28, 1805540.	14.9	180
23	Triboelectric microplasma powered by mechanical stimuli. Nature Communications, 2018, 9, 3733.	12.8	212
24	Intercommunity Detection Scheme for Social Internet of Things: Compressive Sensing Over Graphs Approach. IEEE Internet of Things Journal, 2018, 5, 4550-4557.	8.7	19
25	Self-Powered Multifunctional Motion Sensor Enabled by Magnetic-Regulated Triboelectric Nanogenerator. ACS Nano, 2018, 12, 5726-5733.	14.6	109
26	Compressive Sensing over Graphs Based Inter-Community Detection Scheme in Mobile Social Networks. , 2018, , .		1
27	Structured Compressive Sensing-Based Channel Estimation for Time Frequency Training OFDM Systems Over Doubly Selective Channel. IEEE Wireless Communications Letters, 2017, 6, 266-269.	5.0	23
28	Maximized Effective Energy Output of Contactâ€Separationâ€Triggered Triboelectric Nanogenerators as Limited by Air Breakdown. Advanced Functional Materials, 2017, 27, 1700049.	14.9	144
29	A Selfâ€Powered Dynamic Displacement Monitoring System Based on Triboelectric Accelerometer. Advanced Energy Materials, 2017, 7, 1700565.	19.5	117
30	Integrated power line and visible light communication system compatible with multiâ€service transmission. IET Communications, 2017, 11, 104-111.	2.2	36
31	Piezoâ€Phototronic Effect on Selective Electron or Hole Transport through Depletion Region of Vis–NIR Broadband Photodiode. Advanced Materials, 2017, 29, 1701412.	21.0	82
32	Dynamic Matching Based Distributed Spectrum Trading in Multi-Radio Multi-Channel CRNs., 2016,,.		1
33	Structured compressive sensingâ€based nonâ€orthogonal timeâ€domain training channel state information acquisition for multiple input multiple output systems. IET Communications, 2016, 10, 685-690.	2.2	15
34	Spectrally Efficient CSI Acquisition for Power Line Communications: A Bayesian Compressive Sensing Perspective. IEEE Journal on Selected Areas in Communications, 2016, 34, 2022-2032.	14.0	26
35	Novel Approach to Design Time-Domain Training Sequence for Accurate Sparse Channel Estimation. IEEE Transactions on Broadcasting, 2016, 62, 512-520.	3.2	30
36	Compressive sensing based time-frequency joint non-orthogonal multiple access. , 2016, , .		7

#	Article	IF	Citations
37	Two-Dimensional Structured-Compressed-Sensing-Based NBI Cancelation Exploiting Spatial and Temporal Correlations in MIMO Systems. IEEE Transactions on Vehicular Technology, 2016, 65, 9020-9028.	6.3	20
38	Nonorthogonal Time–Frequency Training-Sequence-Based CSI Acquisition for MIMO Systems. IEEE Transactions on Vehicular Technology, 2016, 65, 5714-5719.	6.3	26
39	Double Kill: Compressive-Sensing-Based Narrow-Band Interference and Impulsive Noise Mitigation for Vehicular Communications. IEEE Transactions on Vehicular Technology, 2016, 65, 5099-5109.	6.3	67
40	Sparse Bayesian Learning Based Symbol Detection for Generalised Spatial Modulation in Large-Scale MIMO Systems. , $2015, \ldots$		7
41	Time–Frequency Joint Sparse Channel Estimation for MIMO-OFDM Systems. IEEE Communications Letters, 2015, 19, 58-61.	4.1	74
42	<inline-formula> <tex-math notation="LaTeX"></tex-math></inline-formula> Minimization Based Symbol Detection for Generalized Space Shift Keying. IEEE Communications Letters, 2015, 19, 1109-1112.	4.1	10
43	An Indoor Broadband Broadcasting System Based on PLC and VLC. IEEE Transactions on Broadcasting, 2015, 61, 299-308.	3.2	99
44	Approach to suppress outâ€ofâ€band emission for dual pseudo noise padded timeâ€domain synchronousâ€orthogonal frequency division multiplexing systems. IET Communications, 2015, 9, 1606-1614.	2.2	3
45	Energyâ€efficient orthogonal frequency division multiplexing scheme based on time–frequency joint channel estimation. IET Communications, 2014, 8, 3406-3413.	2.2	10
46	Joint time-frequency channel estimation method for OFDM systems based on compressive sensing. , 2014, , .		2
47	Indoor hospital communication systems: An integrated solution based on power line and visible light communication. , 2014, , .		32
48	Sparse Bayesian Learning Based Symbol Detection for Generalised Spatial Modulation in Large-Scale MIMO Systems. , 2014, , .		0
49	Non-intrusive power line quality monitoring based on power line communications. , 2013, , .		13
50	Out-of-band power suppression for TDS-OFDM systems. , 2013, , .		4
51	Spectrum notch techniques for TDS-OFDM system. , 2013, , .		1
52	The Modeling and Prediction of the Receive Quality under Single Frequency Networks for DTMB System. , $2011,\ldots$		1
53	Measurement and prediction of DTMB reception quality in single frequency networks. , $2011, , .$		3