
Quentin J Groom

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2680254/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global exchange and accumulation of non-native plants. Nature, 2015, 525, 100-103.	13.7	746
2	Naturalized alien flora of the world. Preslia, 2017, 89, 203-274.	1.1	350
3	Species richness declines and biotic homogenisation have slowed down for <scp>NW</scp> â€European pollinators and plants. Ecology Letters, 2013, 16, 870-878.	3.0	305
4	rbohA, a rice homologue of the mammalian gp91phox respiratory burst oxidase gene. Plant Journal, 1996, 10, 515-522.	2.8	294
5	The changing role of ornamental horticulture in alien plant invasions. Biological Reviews, 2018, 93, 1421-1437.	4.7	251
6	Crossing Frontiers in Tackling Pathways of Biological Invasions. BioScience, 2015, 65, 769-782.	2.2	202
7	The Global Naturalized Alien Flora (Glo <scp>NAF</scp>) database. Ecology, 2019, 100, e02542.	1.5	189
8	Integrating invasive species policies across ornamental horticulture supply chains to prevent plant invasions. Journal of Applied Ecology, 2018, 55, 92-98.	1.9	108
9	Alien Pathogens on the Horizon: Opportunities for Predicting their Threat to Wildlife. Conservation Letters, 2017, 10, 477-484.	2.8	96
10	The non-photochemical reduction of plastoquinone in leaves. Photosynthesis Research, 1993, 36, 205-215.	1.6	85
11	Differential Effects of Chilling-Induced Photooxidation on the Redox Regulation of Photosynthetic Enzymesâ€. Biochemistry, 2000, 39, 6679-6688.	1.2	81
12	Trying to engage the crowd in recording invasive alien species in Europe: experiences from two smartphone applications in northwest Europe. Management of Biological Invasions, 2015, 6, 215-225.	0.5	80
13	Barbaloin inAloeSpecies. Planta Medica, 1987, 53, 345-348.	0.7	78
14	Analysis of Light-Induced Depressions of Photosynthesis in Leaves of a Wheat Crop during the Winter. Plant Physiology, 1992, 100, 1217-1223.	2.3	64
15	Is citizen science an open science in the case of biodiversity observations?. Journal of Applied Ecology, 2017, 54, 612-617.	1.9	59
16	Alien flora of Turkey: checklist, taxonomic composition and ecological attributes. NeoBiota, 0, 35, 61-85.	1.0	57
17	Unlocking biodiversity data: Prioritization and filling the gaps in biodiversity observation data in Europe. Biological Conservation, 2018, 221, 78-85.	1.9	55
18	Photoinhibition of holly (Ilex aquifolium) in the field during the winter. Physiologia Plantarum, 1991, 83, 585-590.	2.6	54

#	Article	IF	CITATIONS
19	Tackling invasive alien species in Europe II: threats and opportunities until 2020. Management of Biological Invasions, 2017, 8, 273-286.	0.5	52
20	Actionable, long-term stable and semantic web compatible identifiers for access to biological collection objects. Database: the Journal of Biological Databases and Curation, 2017, 2017, .	1.4	48
21	Worldwide Engagement for Digitizing Biocollections (WeDigBio): The Biocollections Community's Citizen-Science Space on the Calendar. BioScience, 2018, 68, 112-124.	2.2	45
22	The Bari Manifesto: An interoperability framework for essential biodiversity variables. Ecological Informatics, 2019, 49, 22-31.	2.3	43
23	INVASIVESNET towards an International Association for Open Knowledge on Invasive Alien Species. Management of Biological Invasions, 2016, 7, 131-139.	0.5	41
24	Strategies and guidelines for scholarly publishing of biodiversity data. Research Ideas and Outcomes, 0, 3, e12431.	1.0	40
25	The froh gene family from Arabidopsis thaliana: Putative iron-chelate reductases. Plant and Soil, 1997, 196, 245-248.	1.8	37
26	The importance of open data for invasive alien species research, policy and management. Management of Biological Invasions, 2015, 6, 119-125.	0.5	36
27	Some poleward movement of British native vascular plants is occurring, but the fingerprint of climate change is not evident. PeerJ, 2013, 1, e77.	0.9	35
28	The flora phenotype ontology (FLOPO): tool for integrating morphological traits and phenotypes of vascular plants. Journal of Biomedical Semantics, 2016, 7, 65.	0.9	34
29	A workflow for standardising and integrating alien species distribution data. NeoBiota, 0, 59, 39-59.	1.0	31
30	The Biodiversity Informatics Landscape: Elements, Connections and Opportunities. Research Ideas and Outcomes, 0, 3, e14059.	1.0	31
31	Improving Darwin Core for research and management of alien species. Biodiversity Information Science and Standards, 0, 3, .	0.0	30
32	Increasing understanding of alien species through citizen science (Alien-CSI). Research Ideas and Outcomes, 0, 4, .	1.0	30
33	Seven Recommendations to Make Your Invasive Alien Species Data More Useful. Frontiers in Applied Mathematics and Statistics, 2017, 3, .	0.7	29
34	Empowering Citizens to Inform Decision-Making as a Way Forward to Support Invasive Alien Species Policy. Citizen Science: Theory and Practice, 2019, 4, .	0.6	27
35	Alien futures: What is on the horizon for biological invasions?. Diversity and Distributions, 2018, 24, 1149-1157.	1.9	26
36	A benchmark dataset of herbarium specimen images with label data. Biodiversity Data Journal, 2019, 7, e31817.	0.4	24

#	Article	IF	CITATIONS
37	Species interactions: nextâ€level citizen science. Ecography, 2021, 44, 1781-1789.	2.1	24
38	Conceptual design blueprint for the DiSSCo digitization infrastructure - DELIVERABLE D8.1. Research Ideas and Outcomes, 0, 6, .	1.0	21
39	Frameworks used in invasion science: progress and prospects. NeoBiota, 0, 62, 1-30.	1.0	20
40	People are essential to linking biodiversity data. Database: the Journal of Biological Databases and Curation, 2020, 2020, .	1.4	19
41	The origin of <i>Oxalis corniculata</i> L. PeerJ, 2019, 7, e6384.	0.9	17
42	Herbarium specimens reveal the exchange network of British and Irish botanists, 1856–1932. New Journal of Botany, 2014, 4, 95-103.	0.2	16
43	Tracking Invasive Alien Species (TrIAS): Building a data-driven framework to inform policy. Research Ideas and Outcomes, 0, 3, .	1.0	16
44	SYNTHESYS+ Abridged Grant Proposal. Research Ideas and Outcomes, 0, 5, .	1.0	16
45	Quality issues in georeferencing: From physical collections to digital data repositories for ecological research. Diversity and Distributions, 2021, 27, 564-567.	1.9	15
46	Enriched biodiversity data as a resource and service. Biodiversity Data Journal, 2014, 2, e1125.	0.4	15
47	Landscape Analysis for the Specimen Data Refinery. Research Ideas and Outcomes, 0, 6, .	1.0	15
48	Biodiversity Community Integrated Knowledge Library (BiCIKL). Research Ideas and Outcomes, 0, 8, .	1.0	15
49	Country Compendium of the Global Register of Introduced and Invasive Species. Scientific Data, 2022, 9, .	2.4	15
50	A protocol for adding knowledge to Wikidata: aligning resources on human coronaviruses. BMC Biology, 2021, 19, 12.	1.7	14
51	iNaturalist is an Unexploited Source of Plant-Insect Interaction Data. Biodiversity Information Science and Standards, 0, 3, .	0.0	14
52	A checklist recipe: making species data open and FAIR. Database: the Journal of Biological Databases and Curation, 2020, 2020, .	1.4	13
53	Stable identifiers for collection specimens. Nature, 2017, 546, 33-33.	13.7	12
54	Characterisation of false-positive observations in botanical surveys. PeerJ, 2017, 5, e3324.	0.9	11

#	Article	IF	CITATIONS
55	Estimation of vascular plant occupancy and its change using kriging. New Journal of Botany, 2013, 3, 33-46.	0.2	10
56	Liberating host–virus knowledge from biological dark data. Lancet Planetary Health, The, 2021, 5, e746-e750.	5.1	10
57	Photoinhibition of holly (Ilex aquifolium) in the field during the winter. Physiologia Plantarum, 1991, 83, 585-590.	2.6	10
58	Piecing together the biogeographic history of <i>Chenopodium vulvaria</i> L. using botanical literature and collections. PeerJ, 2015, 3, e723.	0.9	10
59	Improved standardization of transcribed digital specimen data. Database: the Journal of Biological Databases and Curation, 2019, 2019, .	1.4	9
60	Zenodo, an Archive and Publishing Repository: A tale of two herbarium specimen pilot projects. Biodiversity Information Science and Standards, 0, 3, .	0.0	9
61	Towards a scientific workflow featuring Natural Language Processing for the digitisation of natural history collections. Research Ideas and Outcomes, 0, 6, .	1.0	9
62	How to predict fine resolution occupancy from coarse occupancy data. Methods in Ecology and Evolution, 2018, 9, 2273-2284.	2.2	8
63	Scientific user requirements for a herbarium data portal. PhytoKeys, 2017, 78, 37-57.	0.4	8
64	A cost analysis of transcription systems. Research Ideas and Outcomes, 0, 6, .	1.0	8
65	Accumulation of metallothionein transcripts in response to iron, copper and zinc: Metallothionein and metal-chelate reductase. Acta Physiologiae Plantarum, 1997, 19, 451-457.	1.0	7
66	The froh gene family from Arabidopsis thaliana: Putative iron-chelate reductases. , 1997, , 191-194.		7
67	Designing an Herbarium Digitisation Workflow with Built-In Image Quality Management. Biodiversity Data Journal, 2020, 8, e47051.	0.4	7
68	Ten simple rules for making a software tool workflow-ready. PLoS Computational Biology, 2022, 18, e1009823.	1.5	7
69	Characterization of two cDNAs and identification of two proteins that accumulate in response to cadmium in cadmium-tolerantDatura innoxia(Mill.) cells. Journal of Experimental Botany, 1996, 47, 1019-1024.	2.4	6
70	Using legacy botanical literature as a source of phytogeographical data. Plant Ecology and Evolution, 2015, 148, 256-266.	0.3	6
71	Metal-gene-interactions in roots: metallothionein-like genes and iron reductases. , 1997, , 117-130.		6
72	Unifying European Biodiversity Informatics (BioUnify). Research Ideas and Outcomes, 0, 2, e7787.	1.0	6

#	Article	IF	CITATIONS
73	Community engagement: The â€~last mile' challenge for European research e-infrastructures. Research Ideas and Outcomes, 0, 2, e9933.	1.0	6
74	Holistic understanding of contemporary ecosystems requires integration of data on domesticated, captive and cultivated organisms. Biodiversity Data Journal, 2021, 9, e65371.	0.4	5
75	Towards Interlinked FAIR Biodiversity Knowledge: The BiCIKL perspective. Biodiversity Information Science and Standards, 0, 5, .	0.0	5
76	Summary report and strategy recommendations for EU citizen science gateway for biodiversity data. Research Ideas and Outcomes, 0, 2, e11563.	1.0	5
77	Data sharing tools adopted by the European Biodiversity Observation Network Project. Research Ideas and Outcomes, 0, 2, e9390.	1.0	5
78	Towards a scientific workflow featuring Natural Language Processing for the digitisation of natural history collections. Research Ideas and Outcomes, 0, 6, .	1.0	5
79	Using iNaturalist to monitor adherence to best practices in bat handling. Biodiversity Data Journal, 2021, 9, e68052.	0.4	4
80	BioBlitz is More than a Bit of Fun. Biodiversity Information Science and Standards, 0, 5, .	0.0	4
81	Standardised Globally Unique Specimen Identifiers. Biodiversity Information Science and Standards, 0, 2, e26658.	0.0	4
82	Cross-validation of a semantic segmentation network for natural history collection specimens. Machine Vision and Applications, 2022, 33, 1.	1.7	4
83	A botanical demonstration of the potential of linking data using unique identifiers for people. PLoS ONE, 2021, 16, e0261130.	1.1	4
84	R.C. Clarke & M.D. Merlin (2013) – Cannabis: Evolution and Ethnobotany. Plant Ecology and Evolution, 2014, 147, 149-149.	0.3	3
85	Botanicalcollections.be: The New Virtual Herbarium of Meise Botanic Garden (BR). Biodiversity Information Science and Standards, 0, 2, e26140.	0.0	3
86	Observación confirmada de Oxalis dillenii en España. Collectanea Botanica, 0, 36, 004.	0.2	3
87	Biodiversity data provision and decision-making - addressing the challenges. Research Ideas and Outcomes, 0, 3, e12165.	1.0	3
88	Site selection by geese in a suburban landscape. PeerJ, 2020, 8, e9846.	0.9	3
89	Native and introduced plants differ in their distribution patterns in southern England. New Journal of Botany, 2011, 1, 48-57.	0.2	2
90	A Data Standard for Dynamic Collection Descriptions. Biodiversity Information Science and Standards, 0, 5, .	0.0	2

6

#	Article	IF	CITATIONS
91	Using Crowd-curation to Improve Taxon Annotations on the Wikimedia Infrastructure. Biodiversity Information Science and Standards, 0, 3, .	0.0	2
92	Unity in Variety: Developing a collection descriptionÂstandard by consensus. Biodiversity Information Science and Standards, 0, 4, .	0.0	2
93	Typification of Oxalis bowiei W.T.Aiton ex G.Don (Oxalidaceae). PhytoKeys, 2019, 119, 23-30.	0.4	2
94	EU BON's contributions towards meeting Aichi Biodiversity Target 19. Research Ideas and Outcomes, 0, 3, e14013.	1.0	2
95	An Evaluation of In-house versus Out-sourced Data Capture at the Meise Botanic Garden (BR). Biodiversity Information Science and Standards, 0, 2, e26514.	0.0	2
96	Advancing the Catalogue of the World's Natural History Collections. Biodiversity Information Science and Standards, 0, 4, .	0.0	2
97	François Malaisse (2010) How to live and survive in Zambezian open forest (Miombo Ecoregion). Plant Ecology and Evolution, 2011, 144, 377-378.	0.3	1
98	Managing a Mass Digitization Project at Meise Botanic Garden: From Start to Finish. Biodiversity Information Science and Standards, 0, 2, e25912.	0.0	1
99	A benchmark survey of the common plants of South Northumberland and Durham, United Kingdom. Biodiversity Data Journal, 2015, 3, e7318.	0.4	1
100	DoeDat, the Crowdsourcing Platform of Meise Botanic Garden. Biodiversity Information Science and Standards, 0, 2, e26803.	0.0	1
101	Liberating Biodiversity Data From COVID-19 Lockdown: Toward a knowledge hub for mammal host-virus information. Biodiversity Information Science and Standards, 0, 4, .	0.0	1
102	How do you Develop a Data Standard? Wikibase might be the Solution…. Biodiversity Information Science and Standards, 0, 4, .	0.0	1
103	Real gaps in European bird monitoring: A reply to VoÅ™ÃÅ¡ek et al Biological Conservation, 2018, 225, 247-248.	1.9	0
104	Is Your Collection Ambiguous?. Biodiversity Information Science and Standards, 0, 5, .	0.0	0
105	Hacking Infrastructures Together: Towards better interoperability of infrastructures. Biodiversity Information Science and Standards, 0, 5, .	0.0	0
106	Estimating the Completeness of Preserved Collections in Representing Global Biodiversity. Biodiversity Information Science and Standards, 0, 5, .	0.0	0
107	Open Letter to The American Association for the Advancement of Science. The Winnower, 2014, , .	0.0	0
108	TrIAS, leveraging citizen science data to monitor invasive species in Belgium. Biodiversity Information Science and Standards, 0, 2, e24749.	0.0	0

#	Article	IF	CITATIONS
109	Towards an Essential Biodiversity Variable for Species Interactions. Biodiversity Information Science and Standards, 0, 2, e25409.	0.0	Ο
110	Crowdsourcing, is it a good option for your collection digitization?. Biodiversity Information Science and Standards, 0, 2, e25410.	0.0	0
111	A fork in the alphabet soup: DoeDat a multilingual crowdsourcing platform. Biodiversity Information Science and Standards, 0, 2, e25148.	0.0	0
112	Citizen science at the borders of Romance (www.doedat.be). Biodiversity Information Science and Standards, 0, 2, e24991.	0.0	0
113	Opening-up Crépin's Rose Herbarium by New Technologies: a Pilot Project. Biodiversity Information Science and Standards, 0, 2, e25792.	0.0	0
114	Uncertain Geo-Uncertainty: Ecological research and public biodiversity data repositories. Biodiversity Information Science and Standards, 0, 3, .	0.0	0
115	Different Approaches between First and Second Mass Digitisation Project for the Herbarium (BR) atÂMeise Botanic Garden. Biodiversity Information Science and Standards, 0, 3, .	0.0	0
116	LinBi: Linking biodiversity and culture information. Biodiversity Information Science and Standards, 0, 3, .	0.0	0
117	Green Pioneers: Raising awareness of invasive plants for all ages. Biodiversity Information Science and Standards, 0, 3, .	0.0	0
118	Next Steps in Data Capture from Specimen Labels and Data Integration: Lessons learnt from the ICEDIG pilots. Biodiversity Information Science and Standards, 0, 3, .	0.0	0
119	Wikipedia, a Tool for Knowledge Dissemination on Invasive Species. Biodiversity Information Science and Standards, 0, 3, .	0.0	0
120	Progress in Authority Management of People Names for Collections. Biodiversity Information Science and Standards, 0, 3, .	0.0	0
121	Evaluating Methods for Transcribing Specimen Labels. Biodiversity Information Science and Standards, 0, 3, .	0.0	0
122	Uniquely Identifying Collectors of Specimens. Biodiversity Information Science and Standards, 0, 3, .	0.0	0
123	Occurrence Cubes: AÂnew way of aggregating heterogeneous species occurrence data. Biodiversity Information Science and Standards, 0, 4, .	0.0	0
124	Using Global Biodiversity Information Facility Occurrence Data for Automated Invasive Alien Species Risk MappingÂ. Biodiversity Information Science and Standards, 0, 4, .	0.0	0