Denis Jelagin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2680103/publications.pdf

Version: 2024-02-01

51	775	16	26
papers	citations	h-index	g-index
51	51	51	583
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Predicting the Master Curve of Bituminous Mastics with Micromechanical Modelling. RILEM Bookseries, 2022, , 1473-1479.	0.4	O
2	Numerical study of the aggregate contact effect on the complex modulus of asphalt concrete. Materials and Design, 2022, 213, 110342.	7.0	13
3	Spherical indentation test for quasi-non-destructive characterisation of asphalt concrete. Materials and Structures/Materiaux Et Constructions, 2022, 55, 1.	3.1	6
4	Predicting the master curves of bituminous mastics with micromechanical modelling. Road Materials and Pavement Design, 2022, 23, 86-98.	4.0	2
5	Effects of surface texture deterioration and wet surface conditions on asphalt runway skid resistance. Tribology International, 2021, 153, 106589.	5.9	32
6	The viscoelastic characterisation of asphalt mixtures using the indentation test. Road Materials and Pavement Design, 2021, 22, S411-S424.	4.0	3
7	Micro-mechanical modelling of low temperature-induced micro-damage initiation in asphalt concrete based on cohesive zone model. Construction and Building Materials, 2021, 286, 122971.	7.2	15
8	Special Issue on Silicate Solid Waste Recycling. Materials, 2021, 14, 3776.	2.9	0
9	Numerical analysis concerning the skid resistance of rubber-contaminated runway grooves. Tribology International, 2021, 163, 107157.	5.9	2
10	Vibration-induced aggregate segregation in asphalt mixtures. Materials and Structures/Materiaux Et Constructions, 2020, 53, 1.	3.1	14
11	A new viscoelastic micromechanical model for bitumen-filler mastic. Construction and Building Materials, 2020, 253, 119062.	7.2	16
12	Numerical Evaluation of Crushing Resistance of Unbound Road Material. Lecture Notes in Civil Engineering, 2020, , 201-210.	0.4	2
13	Measurement of the viscoelastic properties of asphalt mortar and its components with indentation tests. Road Materials and Pavement Design, 2019, 20, S797-S811.	4.0	12
14	New discrete element framework for modelling asphalt compaction. Road Materials and Pavement Design, 2019, 20, S604-S616.	4.0	34
15	Modelling the flow of asphalt under simulated compaction using discrete element. Construction and Building Materials, 2019, 227, 116432.	7.2	7
16	Computational framework for analysis of contact-induced damage in brittle rocks. International Journal of Solids and Structures, 2019, 167, 24-35.	2.7	10
17	Experimental and numerical analysis of asphalt flow in a slump test. Road Materials and Pavement Design, 2019, 20, S446-S461.	4.0	9
18	A contact model for the normal force between viscoelastic particles in discrete element simulations. Powder Technology, 2019, 342, 985-991.	4.2	19

#	Article	IF	CITATIONS
19	On the Measurement of two Independent Viscoelastic Functions with Instrumented Indentation Tests. Experimental Mechanics, 2018, 58, 301-314.	2.0	10
20	Exploratory study on bitumen content determination for foamed bitumen mixes based on porosity and indirect tensile strength. Journal of Traffic and Transportation Engineering (English Edition), 2017, 4, 131-144.	4.2	4
21	Contact-induced deformation and damage of rocks used in pavement materials. Materials and Design, 2017, 133, 255-265.	7.0	12
22	Experimental Study of Dowel Bar Alternatives Based on Similarity Model Test. Advances in Materials Science and Engineering, 2017, 2017, 1-9.	1.8	1
23	Force transmission and soil fabric of binary granular mixtures. Geotechnique, 2016, 66, 578-583.	4.0	58
24	Towards asphalt mixture morphology evaluation with the virtual specimen approach. Road Materials and Pavement Design, $2016, 17, 579-599$.	4.0	14
25	The non-stationary response of flexible pavements to moving loads. International Journal of Pavement Engineering, 2016, 17, 458-470.	4.4	10
26	Binder distribution model for asphalt mixtures based on packing of the primary structure. International Journal of Pavement Engineering, 2015, 16, 144-156.	4.4	12
27	Dynamic response of flexible pavements at vehicle–road interaction. Road Materials and Pavement Design, 2015, 16, 256-276.	4.0	31
28	Mechanics-based top-down fatigue cracking initiation prediction framework for asphalt pavements. Road Materials and Pavement Design, 2015, 16, 907-927.	4.0	21
29	Investigation of the asphalt mixture morphology influence on its ageing susceptibility. Materials and Structures/Materiaux Et Constructions, 2015, 48, 987-1000.	3.1	21
30	Influence of aggregate packing structure on California bearing ratio values of unbound granular materials. Road Materials and Pavement Design, 2014, 15, 102-113.	4.0	31
31	Packing theory-based framework for evaluating resilient modulus of unbound granular materials. International Journal of Pavement Engineering, 2014, 15, 689-697.	4.4	26
32	Effect of micro-scale morphological parameters on meso-scale response of Asphalt Concrete. , 2014, , 1775-1784.		2
33	Packing theory-based framework to evaluate permanent deformation of unbound granular materials. International Journal of Pavement Engineering, 2013, 14, 309-320.	4.4	47
34	Evaluation of the low temperature cracking performance of asphalt mixtures utilizing HMA fracture mechanics. Construction and Building Materials, 2013, 47, 594-600.	7.2	18
35	Gradation-based framework for asphalt mixture. Materials and Structures/Materiaux Et Constructions, 2013, 46, 1401-1414.	3.1	51
36	Nonlocal Frictional Effects at Indentation of Elastic Materials. Tribology Letters, 2013, 51, 397-407.	2.6	1

#	Article	IF	Citations
37	Measurement of the Viscoelastic Properties of Bitumen Using Instrumented Spherical Indentation. Experimental Mechanics, 2013, 53, 1233-1244.	2.0	10
38	Asphalt Internal Structure Characterization with X-Ray Computed Tomography and Digital Image Processing. RILEM Bookseries, 2013, , 139-158.	0.4	16
39	On indenter boundary effects at elastic contact. Journal of Mechanics of Materials and Structures, 2012, 7, 165-182.	0.6	0
40	Evaluation of a novel calibrated-mechanistic model to design against fracture under Swedish conditions. Road Materials and Pavement Design, 2012, 13, 49-66.	4.0	6
41	A computational framework for viscoelastic analysis of flexible pavements under moving loads. Materials and Structures/Materiaux Et Constructions, 2012, 45, 1655-1671.	3.1	20
42	Evaluation of predictive material models used in the new Swedish mechanistic-empirical design module. Road Materials and Pavement Design, 2012, 13, 300-311.	4.0	1
43	Using Life Cycle Assessment to Optimize Pavement Crack-Mitigation. , 2012, , 299-306.		1
44	Atomic Force Microscopy to Characterize the Healing Potential of Asphaltic Materials., 2012,,.		4
45	An empirical framework for determining asphalt mastic viscosity as a function of mineral filler concentration. Construction and Building Materials, 2012, 35, 23-29.	7.2	64
46	Micro-mechanical Investigation of Low Temperature Fatigue Cracking Behaviour of Bitumen. RILEM Bookseries, 2012, , 1281-1290.	0.4	9
47	Towards a New Experimental and Numerical Protocol for Determining Mastic Viscosity., 2012,, 103-113.		1
48	On indentation and initiation of fracture in glass. International Journal of Solids and Structures, 2008, 45, 2993-3008.	2.7	18
49	Hertzian fracture at finite friction: A parametric study. Wear, 2008, 265, 840-848.	3.1	5
50	Hertzian fracture at unloading. Journal of the Mechanics and Physics of Solids, 2006, 54, 2453-2473.	4.8	14
51	Hertz contact at finite friction and arbitrary profiles. Journal of the Mechanics and Physics of Solids, 2005, 53, 1422-1447.	4.8	40