
Pavel M Polestshuk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2679771/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Generation of Triplet Excited States via Photoinduced Electron Transfer in <i>meso</i> -anthra-BODIPY: Fluorogenic Response toward Singlet Oxygen in Solution and in Vitro. Journal of the American Chemical Society, 2017, 139, 6282-6285.	6.6	248
2	Control of triplet state generation in heavy atom-free BODIPY–anthracene dyads by media polarity and structural factors. Physical Chemistry Chemical Physics, 2018, 20, 8016-8031.	1.3	96
3	A Bond Path and an Attractive Ehrenfest Force Do Not Necessarily Indicate Bonding Interactions: Case Study on M ₂ X ₂ (M=Li, Na, K; X=H, OH, F, Cl). Chemistry - A European Journal, 2012, 18, 4982-4993.	1.7	72
4	BODIPYâ€Pyrene and Perylene Dyads as Heavyâ€Atomâ€Free Singlet Oxygen Sensitizers. ChemPhotoChem, 2018 2, 606-615.	'1.5	66
5	Forced Bonding and QTAIM Deficiencies: A Case Study of the Nature of Interactions in He@Adamantane and the Origin of the High Metastability. Chemistry - A European Journal, 2013, 19, 10945-10957.	1.7	22
6	Accurate integration over atomic regions bounded by zeroâ€flux surfaces. Journal of Computational Chemistry, 2013, 34, 206-219.	1.5	19
7	<i>Ad hoc</i> methods for accurate determination of Bader's atomic boundary. Journal of Chemical Physics, 2013, 139, 054108.	1.2	11
8	Reliability of interacting quantum atoms (IQA) data computed from post-HF densities: impact of the approximation used. Physical Chemistry Chemical Physics, 2017, 19, 16375-16386.	1.3	11
9	The electronic structure and energetics of V+-benzene half-sandwiches of different multiplicities: Comparative multireference and single-reference theoretical study. Journal of Chemical Physics, 2008, 129, 054307.	1.2	7
10	Computational Exploration of the Mechanism of Alcohol Oxidation by Dioxygen Activated with Biquinolyl-Containing Cu Complexes. Inorganic Chemistry, 2010, 49, 3370-3386.	1.9	7
11	The Nature of Metal–Metal Interactions in Dimeric Hydrides and Halides of Groupâ€11 Elements in the Light of High Level Relativistic Calculations. Chemistry - A European Journal, 2017, 23, 3257-3261.	1.7	7
12	TWOE Code: An Efficient Tool for Explicit Partition of Coupled Cluster and Configuration Interaction Energies into Atomic and Diatomic Contributions. Journal of Physical Chemistry A, 2021, 125, 3198-3207.	1.1	3
13	Interacting quantum atoms (IQA) energy partition: The employing exact response CCSD density to benchmark density matrix functional approximations. Chemical Physics Letters, 2019, 717, 136-140.	1.2	2