## Jose Maria Andres

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2679694/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                   | IF                  | CITATIONS      |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------|
| 1  | NHC-catalysed [3 + 2]-asymmetric annulation between pyrazolin-4,5-diones and enals: synthesis of novel spirocyclic pyrazolone l³-butyrolactones and computational study of mechanism and stereoselectivity. Organic Chemistry Frontiers, 2022, 9, 420-427.                                | 4.5                 | 13             |
| 2  | Bifunctional thiourea-modified polymers of intrinsic microporosity for enantioselective α-amination of 3-aryl-2-oxindoles in batch and flow conditions. Organic and Biomolecular Chemistry, 2020, 18, 9275-9283.                                                                          | 2.8                 | 8              |
| 3  | Supported Bifunctional Chiral Thioureas as Catalysts in the Synthesis of 3â€Aminoâ€2â€Oxindoles through<br>Enantioselective azaâ€Friedelâ€Crafts Reaction: Application in Continuous Flow Processes. Advanced<br>Synthesis and Catalysis, 2020, 362, 2744-2754.                           | 4.3                 | 26             |
| 4  | Chiral Bifunctional Thiosquaramides as Organocatalysts in the Synthesis of Enantioenriched<br>3,3â€Disubstituted Oxindoles. European Journal of Organic Chemistry, 2019, 2019, 6539-6549.                                                                                                 | 2.4                 | 5              |
| 5  | Chiral Bifunctional Thioureas and Squaramides Grafted into Old Polymers of Intrinsic Microporosity for Novel Applications. Polymers, 2019, 11, 13.                                                                                                                                        | 4.5                 | 14             |
| 6  | Synthesis of Enantioenriched 3â€Aminoâ€3â€Substituted Oxindoles by Stereoselective Mannich Reaction<br>Catalyzed by Supported Bifunctional Thioureas Advanced Synthesis and Catalysis, 2019, 361, 3645-3655.                                                                              | 4.3                 | 15             |
| 7  | Chiral Bifunctional Thioureas and Squaramides and Their Copolymers as Recoverable<br>Organocatalysts. Stereoselective Synthesis of 2-Substituted 4-Amino-3-nitrobenzopyrans and<br>3-Functionalized 3,4-Diamino-4 <i>H</i> -Chromenes. Journal of Organic Chemistry, 2018, 83, 5546-5557. | 3.2                 | 29             |
| 8  | Diastereo- and Enantioselective Syntheses of Trisubstituted Benzopyrans by Cascade Reactions<br>Catalyzed by Monomeric and Polymeric Recoverable Bifunctional Thioureas and Squaramides. ACS<br>Omega, 2018, 3, 16591-16600.                                                              | 3.5                 | 10             |
| 9  | Recyclable Chiral Bifunctional Thioureas Derived from [60]Fullerene and Their Use as Highly Efficient<br>Organocatalysts for the Asymmetric Nitroâ€Michael Reaction. European Journal of Organic Chemistry,<br>2017, 2017, 2683-2691.                                                     | 2.4                 | 17             |
| 10 | Front Cover: Recyclable Chiral Bifunctional Thioureas Derived from [60]Fullerene and Their Use as<br>Highly Efficient Organocatalysts for the Asymmetric Nitro-Michael Reaction (Eur. J. Org. Chem.) Tj ETQq0 0 0 rg                                                                      | BT ∕ <b>Ω</b> ≉erlo | ck 100 Tf 50 3 |
| 11 | Biodegradable Chitosanâ€Derived Thioureas as Recoverable Supported Organocatalysts – Application to<br>the Stereoselective Azaâ€Henry Reaction. European Journal of Organic Chemistry, 2017, 2017, 3658-3665.                                                                             | 2.4                 | 18             |
| 12 | Supported and Unsupported Chiral Squaramides as Organocatalysts for Stereoselective Michael<br>Additions: Synthesis of Enantiopure Chromenes and Spirochromanes. Journal of Organic Chemistry,<br>2017, 82, 8444-8454.                                                                    | 3.2                 | 28             |
| 13 | Supported bifunctional thioureas as recoverable and reusable catalysts for enantioselective nitro-Michael reactions. Beilstein Journal of Organic Chemistry, 2016, 12, 628-635.                                                                                                           | 2.2                 | 22             |
| 14 | Short Synthesis of Novel Recyclable Chiral Bifunctional Thioureas from Aminoalkyl Polystyrene and<br>their use as Organocatalysts in Stereoselective azaâ€Henry Reaction ChemistrySelect, 2016, 1, 5057-5061.                                                                             | 1.5                 | 12             |
| 15 | Bottomâ€Up Synthesis of Supported Thioureas and Their Use in Enantioselective Solventâ€Free Azaâ€Henry<br>and Michael Additions. ChemPlusChem, 2016, 81, 86-92.                                                                                                                           | 2.8                 | 28             |
| 16 | Enantioselective synthesis of seven-membered carbo- and heterocyles by organocatalyzed intramolecular Michael addition. RSC Advances, 2016, 6, 30166-30169.                                                                                                                               | 3.6                 | 5              |
| 17 | Chiral ureas and thioureas supported on polystyrene for enantioselective aza-Henry reactions under solvent-free conditions. Green Chemistry, 2015, 17, 2217-2225.                                                                                                                         | 9.0                 | 32             |
| 18 | The organocatalyzed domino Michael–aldol reaction revisited. Synthesis of enantioenriched<br>3-hydroxycyclohexanone derivatives by reaction of enals with α,α′-diaryl-substituted acetone. RSC<br>Advances, 2015, 5, 65975-65981.                                                         | 3.6                 | 7              |

| #  | Article                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Organocatalytic Domino Michael–Heterocyclization Reaction of α,βâ€Unsaturated Aldehydes and αâ€Cyano<br>Ketones: Synthesis of Enantioenriched 4,5,6â€Trisubstituted 3,4â€Dihydropyranones. European Journal of<br>Organic Chemistry, 2014, 2014, 8072-8076. | 2.4 | 15        |
| 20 | One-Pot Sequential Organocatalytic Michael–Tishchenko–Lactonization Reactions. Synthesis of<br>Enantioenriched 4,5,6-Trisubstituted δ-Lactones. Journal of Organic Chemistry, 2014, 79, 8638-8644.                                                          | 3.2 | 19        |
| 21 | Novel sulfonylpolystyrene-supported prolinamides as catalysts for enantioselective aldol reaction in water. Tetrahedron, 2013, 69, 10811-10819.                                                                                                             | 1.9 | 36        |
| 22 | Novel supported and unsupported prolinamides as organocatalysts for enantioselective cyclization of triketones. Tetrahedron Letters, 2013, 54, 3101-3104.                                                                                                   | 1.4 | 23        |
| 23 | Highly diastereo- and enantioselective direct Barbas–List aldol reactions promoted by novel<br>benzamidoethyl and benzamidopropyl prolinamides in water. Organic and Biomolecular Chemistry,<br>2011, 9, 935-940.                                           | 2.8 | 39        |
| 24 | Enantioselective Conjugate Addition of Nitro Compounds to α,βâ€Unsaturated Ketones: An Experimental<br>and Computational Study. Chemistry - A European Journal, 2011, 17, 5931-5938.                                                                        | 3.3 | 72        |
| 25 | Direct Experimental Evidence for the Epimerization of Diastereoisomers in the Enantioselective<br>Organocatalyzed Michael Addition of Acetoacetates to Nitroolefins. Synlett, 2011, 2011, 2203-2205.                                                        | 1.8 | 3         |
| 26 | <scp>L</scp> â€Prolinamides Derived from Chiral and Achiral 1,2â€Diamines as Useful Bifunctional<br>Organocatalysts for Direct Diastereo―and Enantioselective Aldol Reaction. European Journal of<br>Organic Chemistry, 2010, 2010, 5310-5319.              | 2.4 | 24        |
| 27 | Stereocontrolled Construction of Quaternary Stereocenters by Inter―and Intramolecular<br>Nitroâ€Michael Additions Catalyzed by Bifunctional Thioureas. Advanced Synthesis and Catalysis, 2010,<br>352, 3364-3372.                                           | 4.3 | 55        |
| 28 | Synthesis of both Enantiomers of Hemiesters by Enantioselective Methanolysis of Meso Cyclic<br>Anhydrides Catalyzed by α-Amino Acid-Derived Chiral Thioureas. Journal of Organic Chemistry, 2010, 75,<br>5417-5420.                                         | 3.2 | 33        |
| 29 | Novel Bifunctional Chiral Urea and Thiourea Derivatives as Organocatalysts: Enantioselective<br>Nitroâ€Michael Reaction of Malonates and Diketones. Chemistry - A European Journal, 2008, 14, 5116-5119.                                                    | 3.3 | 167       |
| 30 | Synthesis of Enantioenriched 2- and 2,6-Substituted Piperidin-3-ols from α-Dibenzylamino Aldehydes.<br>European Journal of Organic Chemistry, 2007, 2007, 1803-1810.                                                                                        | 2.4 | 21        |
| 31 | Diastereoselective synthesis of enantioenriched homopropargyl amino alcohols from α-dibenzylamino aldehydes and their use as chiral synthons. Tetrahedron, 2006, 62, 7783-7792.                                                                             | 1.9 | 4         |
| 32 | Diastereoselective syntheses of 2-amino propargyl alcohols. Chiral building blocks for enantiopure<br>amino γ-lactones and 5-hydroxy-piperidinone derivatives. Tetrahedron Letters, 2006, 47, 5317-5320.                                                    | 1.4 | 19        |
| 33 | Diastereoselective Ethynylation of Chiral α-(Dibenzylamino) Aldehydes: Synthesis ofmeso- and<br>HomochiralC2-Symmetrical 1,6-Diamino-2,5-diols. European Journal of Organic Chemistry, 2006, 2006,<br>3442-3450.                                            | 2.4 | 2         |
| 34 | Diastereoselective Cyclization of Î <sup>3</sup> -δ Epoxyketones with (-)-Phenylglycinol: Synthesis of Both<br>Enantiomers of cis-5-Alkyl-2-hydroxymethyl Pyrrolidines. Synlett, 2004, 2004, 2016-2018.                                                     | 1.8 | 0         |
| 35 | Diastereoselective Synthesis ofβ-Amino-α-(trifluoromethyl) Alcohols from Homochiralα-Dibenzylamino<br>Aldehydes. European Journal of Organic Chemistry, 2004, 2004, 1558-1566.                                                                              | 2.4 | 15        |
| 36 | Diastereoselective synthesis of enantiopure γ-amino-β-hydroxy acids by Reformatsky reaction of chiral<br>α-dibenzylamino aldehydes. Tetrahedron, 2001, 57, 8521-8530.                                                                                       | 1.9 | 29        |

Jose Maria Andres

| #  | Article                                                                                                                                                                                                        | lF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Stereoselective cyanation of chiral α-amino aldehydes by reaction with Nagata's reagent: a route to enantiopure β-amino-α-hydroxy acids. Tetrahedron: Asymmetry, 2001, 12, 347-353.                            | 1.8 | 34        |
| 38 | Stereoselective synthesis of (5S,6S)- and (5S,6R)-aza-muricatacin from an l-glutamic acid derivative.<br>Tetrahedron: Asymmetry, 2001, 12, 1503-1509.                                                          | 1.8 | 21        |
| 39 | A Practical Stereoselective Synthesis of both Enantiomers of Threo- and Erythro-β-Hydroxy Norvaline<br>from (S)-Serine Derivatives. Tetrahedron, 2000, 56, 1523-1531.                                          | 1.9 | 15        |
| 40 | Synthesis of Chiral, Non-racemic Aldols from Chiral β-Hydroxy-Weinreb Amides Prepared by<br>Enantioselective Reformatsky-like Reaction Induced by Chiral β-Aminoalcohols. Tetrahedron, 2000, 56,<br>1217-1223. | 1.9 | 32        |
| 41 | Stereodivergent synthesis of all diastereomers of 4-aminoheptane-3,5-diol from (L)-serine.<br>Tetrahedron, 1998, 54, 5607-5616.                                                                                | 1.9 | 25        |
| 42 | A facile stereodivergent synthesis of threo- and erythro-N,N-dibenzyl sphingosines from<br>(S)-N,N-dibenzyl-O-TBDMS-serinal. Tetrahedron: Asymmetry, 1998, 9, 2493-2498.                                       | 1.8 | 15        |
| 43 | Enantioselective reformatsky reaction induced by chiral β-amino alcohols. Tetrahedron, 1997, 53, 3787-3794.                                                                                                    | 1.9 | 42        |
| 44 | Synthesis of Enantiopuresyn-β-Amino Alcohols. A Simple Case of Chelation-Controlled Additions of<br>Diethylzinc to α-(Dibenzylamino) Aldehydesâ€. Journal of Organic Chemistry, 1996, 61, 4210-4213.           | 3.2 | 59        |
| 45 | Synthesis of Chiral α,α-Difluoro-β-hydroxy Esters by Enantioselective Reformatsky Reaction. Synthesis,<br>1996, 1996, 1070-1072.                                                                               | 2.3 | 35        |
| 46 | Synthesis of [1]Benzopyrano[4,3-b]pyrrol-4(1H)-ones from 4-Chlorocoumarin. Synthesis, 1994, 1994, 279-281.                                                                                                     | 2.3 | 14        |
| 47 | Easy preparation of enantiopure C2-symmetrical aminoalcohols derived from m-xylylene diamine<br>Tetrahedron: Asymmetry, 1994, 5, 57-66.                                                                        | 1.8 | 7         |
| 48 | Enantioselective ethylation of aldehydes catalyzed by chiral C2-symmetrical β-hydroxy-m-xylylene<br>diamines. Tetrahedron: Asymmetry, 1994, 5, 67-72.                                                          | 1.8 | 16        |
| 49 | Improved stereoselective methods of triene and diene synthesis: A novel application of Na(Hg)<br>Tetrahedron Letters, 1993, 34, 2835-2838.                                                                     | 1.4 | 22        |
| 50 | Regioselective Synthesis of 2-Functionalized Thiophenes by Condensation of α-Mercapto Compounds with β-Aminoenone Derivatives. Synthetic Communications, 1990, 20, 2537-2547.                                  | 2.1 | 17        |
| 51 | Differential reactivity of β-amino enones and 3-dimethylaminoacrylaldehyde towards α-amino derivatives. Journal of the Chemical Society Perkin Transactions 1, 1990, , 2681-2685.                              | 0.9 | 16        |