Jaime Garcia-Mena

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2679691/publications.pdf

Version: 2024-02-01

92 papers 2,418 citations

201385 27 h-index 223531 46 g-index

96 all docs 96
docs citations

96 times ranked 4413 citing authors

#	Article	IF	CITATIONS
1	The Influence of Holder Pasteurization on the Diversity of the Human Milk Bacterial Microbiota Using High-Throughput DNA Sequencing. Journal of Human Lactation, 2022, 38, 118-130.	0.8	8
2	The Bacterial and Fungal Microbiota of the Mexican Rubiaceae Family Medicinal Plant Bouvardia ternifolia. Microbial Ecology, 2022, 84, 510-526.	1.4	6
3	Physical and Dietary Intervention with Opuntia ficus-indica (Nopal) in Women with Obesity Improves Health Condition through Gut Microbiota Adjustment. Nutrients, 2022, 14, 1008.	1.7	7
4	Detection and Quantification of Immunoregulatory miRNAs in Human Milk and Infant Milk Formula. BioTech, 2022, 11, 11.	1.3	5
5	A high-throughput DNA sequencing study of fecal bacteria of seven Mexican horse breeds. Archives of Microbiology, 2022, 204, .	1.0	1
6	Vaginal Microbiota Is Stable and Mainly Dominated by Lactobacillus at Third Trimester of Pregnancy and Active Childbirth: A Longitudinal Study of Ten Mexican Women. Current Microbiology, 2022, 79, .	1.0	4
7	Gut Microbiota Alterations and Cognitive Impairment Are Sexually Dissociated in a Transgenic Mice Model of Alzheimer's Disease. Advances in Alzheimer's Disease, 2022, , .	0.2	O
8	Characterization of the Plant-Associated Bacterial Microbiota of the Mexican Medicinal Species Bouvardia ternifolia. Proceedings (mdpi), 2021, 66, .	0.2	1
9	The vaginal and fecal microbiota of a murine cervical carcinoma model under synergistic effect of $17\hat{l}^2$ -Estradiol and E7 oncogene expression. Microbial Pathogenesis, 2021, 152, 104763.	1.3	3
10	Spatial Memory and Gut Microbiota Alterations Are Already Present in Early Adulthood in a Pre-clinical Transgenic Model of Alzheimer's Disease. Frontiers in Neuroscience, 2021, 15, 595583.	1.4	28
11	Gut Microbiota Alterations and Cognitive Impairment Are Sexually Dissociated in a Transgenic Mice Model of Alzheimer's Disease. Journal of Alzheimer's Disease, 2021, 82, S195-S214.	1.2	27
12	Dynamics of the canonical RNA degradosome components during glucose stress. Biochimie, 2021, 187, 67-74.	1.3	0
13	Modulation of the microbiota-gut-brain axis by bioactive food, prebiotics, and probiotics decelerates the course of Alzheimer's disease. Studies in Natural Products Chemistry, 2021, , 51-86.	0.8	2
14	Variation of the Human Milk Bacterial Diversity during the Time of the Day. Proceedings (mdpi), 2021, 66, .	0.2	2
15	Study of perinatal transmission of SARS-CoV-2 in a Mexican public hospital. International Journal of Infectious Diseases, 2021, 113, 225-232.	1.5	4
16	Gut microbiota in a population highly affected by obesity and type 2 diabetes and susceptibility to COVID-19. World Journal of Gastroenterology, 2021, 27, 7065-7079.	1.4	6
17	Maternal IgA2 Recognizes Similar Fractions of Colostrum and Fecal Neonatal Microbiota. Frontiers in Immunology, 2021, 12, 712130.	2.2	1
18	THE FUNCTIONAL RESPONSE OF IMMOBILIZED MICROBIAL COMMUNITIES TO INCREASE LOADING RATES OF THE PESTICIDES CHLORPYRIFOS AND BIFENTHRIN. Environmental Engineering and Management Journal, 2021, 20, 1317-1327.	0.2	0

#	Article	IF	CITATIONS
19	Influence of moderate beer consumption on human gut microbiota and its impact on fasting glucose and Î ² -cell function. Alcohol, 2020, 85, 77-94.	0.8	37
20	Assessment of the tolerance to Fe, Cu and Zn of a sulfidogenic sludge generated from hydrothermal vents sediments as a basis for its application on metals precipitation. Molecular Biology Reports, 2020, 47, 6165-6177.	1.0	2
21	A case report of newborn infant with severe COVID-19 in Mexico: Detection of SARS-CoV-2 in human breast milk and stool. International Journal of Infectious Diseases, 2020, 100, 21-24.	1.5	41
22	"Bacterial consortium from hydrothermal vent sediments presents electrogenic activity achieved under sulfate reducing conditions in a microbial fuel cell― Journal of Environmental Health Science & Engineering, 2020, 18, 1189-1205.	1.4	6
23	Characterization of the Gut Microbiota of Individuals at Different T2D Stages Reveals a Complex Relationship with the Host. Microorganisms, 2020, 8, 94.	1.6	44
24	Characterization of the Food Microbiota in Ready-to-Eat Mexican Foods. Proceedings (mdpi), 2020, 66, 32.	0.2	1
25	Human milk microbiota associated with early colonization of the neonatal gut in Mexican newborns. Peerl, 2020, 8, e9205.	0.9	32
26	Microbial Profile of the Leachate from Mexico City's Bordo Poniente Composting Plant: An Inoculum to Digest Organic Waste. Energies, 2019, 12, 2343.	1.6	5
27	Microbial diversity assessment of polychlorinated biphenyl–contaminated soils and the biostimulation and bioaugmentation processes. Environmental Monitoring and Assessment, 2019, 191, 118.	1.3	19
28	Gut Microbiota and Predicted Metabolic Pathways in a Sample of Mexican Women Affected by Obesity and Obesity Plus Metabolic Syndrome. International Journal of Molecular Sciences, 2019, 20, 438.	1.8	129
29	Electricity generation from Nopal biogas effluent using a surface modified clay cup (cantarito) microbial fuel cell. Heliyon, 2019, 5, e01506.	1.4	15
30	The gut microbiome of Mexican children affected by obesity. Anaerobe, 2019, 55, 11-23.	1.0	71
31	Simulation and experimental validation of a gradient feeding system for fast assessment of the kinetic behavior of a microbial consortium in a tubular biofilm reactor. Bioprocess and Biosystems Engineering, 2019, 42, 17-27.	1.7	1
32	Gut microbiome production of short-chain fatty acids and obesity in children. European Journal of Clinical Microbiology and Infectious Diseases, 2018, 37, 621-625.	1.3	139
33	Gut Microbiota and Endothelial Dysfunction Markers in Obese Mexican Children and Adolescents. Nutrients, 2018, 10, 2009.	1.7	82
34	Resveratrol decreases Rad51 expression and sensitizes cisplatinâ€'resistant MCFâ€'7 breast cancer cells. Oncology Reports, 2018, 39, 3025-3033.	1.2	27
35	Profiling of bacterial and fungal communities of Mexican cheeses by high throughput DNA sequencing. Food Research International, 2018, 113, 371-381.	2.9	38
36	Induction of p53 Phosphorylation at Serine 20 by Resveratrol Is Required to Activate p53 Target Genes, Restoring Apoptosis in MCF-7 Cells Resistant to Cisplatin. Nutrients, 2018, 10, 1148.	1.7	24

#	Article	IF	CITATIONS
37	DNA methylation data for identification of epigenetic targets of resveratrol in triple negative breast cancer cells. Data in Brief, 2017, 11, 169-182.	0.5	18
38	Expression of a codon-optimized \hat{l}^2 -glucosidase from Cellulomonas flavigena PR-22 in Saccharomyces cerevisiae for bioethanol production from cellobiose. Archives of Microbiology, 2017, 199, 605-611.	1.0	12
39	Kinetics of carbendazim degradation in a horizontal tubular biofilm reactor. Bioprocess and Biosystems Engineering, 2017, 40, 519-528.	1.7	15
40	Intestinal Dysbiosis and Rheumatoid Arthritis: A Link between Gut Microbiota and the Pathogenesis of Rheumatoid Arthritis. Journal of Immunology Research, 2017, 2017, 1-13.	0.9	202
41	Current Insight into the Role of Gut Microbiota in Mexican Childhood Obesity. SOJ Pharmacy & Pharmaceutical Sciences, 2017, 4, 1-5.	0.1	4
42	Expression of candidate genes associated with obesity in peripheral white blood cells of Mexican children. Archives of Medical Science, 2016, 5, 968-976.	0.4	10
43	Resveratrol inhibits cell cycle progression by targeting Aurora kinase A and Polo-like kinase 1 in breast cancer cells. Oncology Reports, 2016, 35, 3696-3704.	1.2	38
44	Aerobic biofilm reactor for treating a commercial formulation of the herbicides 2,4-D and dicamba: Biodegradation kinetics and biofilm bacterial diversity. International Biodeterioration and Biodegradation, 2016, 107, 123-131.	1.9	36
45	Airborne Bacterial Diversity from the Low Atmosphere of Greater Mexico City. Microbial Ecology, 2016, 72, 70-84.	1.4	31
46	Removal of Congo Red from the aqueous phase by chitin and chitosan from waste shrimp. Desalination and Water Treatment, 2016, 57, 14674-14685.	1.0	12
47	Methylation Landscape of Human Breast Cancer Cells in Response to Dietary Compound Resveratrol. PLoS ONE, 2016, 11, e0157866.	1.1	57
48	Study of the diversity and short-chain fatty acids production by the bacterial community in overweight and obese Mexican children. European Journal of Clinical Microbiology and Infectious Diseases, 2015, 34, 1337-1346.	1.3	114
49	Beneficial effect of a high number of copies of salivary amylase AMY1 gene on obesity risk in Mexican children. Diabetologia, 2015, 58, 290-294.	2.9	89
50	Extracellular expression of glucose inhibition-resistant Cellulomonas flavigena PN-120 \hat{l}^2 -glucosidase by a diploid strain of Saccharomyces cerevisiae. Archives of Microbiology, 2014, 196, 25-33.	1.0	3
51	Ribonuclease PH interacts with an acidic ribonuclease E site through a basic 80-amino acid domain. FEMS Microbiology Letters, 2014, 355, 51-60.	0.7	3
52	Cheese whey as substrate of batch hydrogen production: Effect of temperature and addition of buffer. Waste Management and Research, 2014, 32, 434-440.	2.2	7
53	Energy analysis of in-series biohydrogen and methane production from organic wastes. International Journal of Hydrogen Energy, 2014, 39, 16587-16594.	3.8	18
54	Association of \hat{l}^21 and \hat{l}^23 adrenergic receptors gene polymorphisms with insulin resistance and high lipid profiles related to type 2 diabetes and metabolic syndrome. Nutricion Hospitalaria, 2014, 29, 1327-34.	0.2	17

#	Article	IF	Citations
55	P450â€aromatase mRNA is Expressed in the Corpus Luteum (CL) of the Nonâ€Pregnant Sheep and Goat: The Expression of the Enzyme is Present Throughout Pregnancy in the Goat CL. Reproduction in Domestic Animals, 2013, 48, 85-89.	0.6	3
56	Analysis of the contribution of FTO, NPC1, ENPP1, NEGR1, GNPDA2 and MC4Rgenes to obesity in Mexican children. BMC Medical Genetics, 2013, 14, 21.	2.1	55
57	The assembly and distribution inÂvivo of the Escherichia coli RNA degradosome. Biochimie, 2013, 95, 2034-2041.	1.3	15
58	Comparison of biohydrogen production in fluidized bed bioreactors at room temperature and 35°C. International Journal of Hydrogen Energy, 2013, 38, 12570-12579.	3.8	20
59	Resveratrol induces downregulation of DNA repair genes in MCF-7 human breast cancer cells. European Journal of Cancer Prevention, 2013, 22, 11-20.	0.6	42
60	Preformance of an Electrobiochemical Slurry Reactor for the Treatment of a Soil Contaminated with Lindane. Journal of New Materials for Electrochemical Systems, 2013, 16, 217-228.	0.3	7
61	Recognition of the 70S ribosome and polysome by the RNA degradosome in Escherichia coli. Nucleic Acids Research, 2012, 40, 10417-10431.	6.5	60
62	Influence of discontinuing feeding degradable cosubstrate on the performance of a fluidized bed bioreactor treating a mixture of trichlorophenol and phenol. Journal of Environmental Management, 2012, 113, 527-537.	3.8	15
63	A Replication Study of the IRS1, CAPN10, TCF7L2, and PPARG Gene Polymorphisms Associated with Type 2 Diabetes in Two Different Populations of Mexico. Annals of Human Genetics, 2011, 75, 612-620.	0.3	46
64	rs12255372 Variant of TCF7L2 Gene Is Protective for Obesity in Mexican Children. Archives of Medical Research, 2011, 42, 495-501.	1.5	12
65	Genome-wide association study of type 2 diabetes in a sample from Mexico City and a meta-analysis of a Mexican-American sample from Starr County, Texas. Diabetologia, 2011, 54, 2038-2046.	2.9	114
66	Candidate gene association study conditioning on individual ancestry in patients with type 2 diabetes and metabolic syndrome from Mexico City. Diabetes/Metabolism Research and Reviews, 2010, 26, 261-270.	1.7	98
67	Association of polymorphisms within the transforming growth factorâ€Î²1 gene with diabetic nephropathy and serum cholesterol and triglyceride concentrations. Nephrology, 2010, 15, 644-648.	0.7	26
68	Association of CYP2C19 genotype with type 2 diabetes. Health, 2010, 02, 1184-1190.	0.1	10
69	Analysis of some phenotypic traits of feces-borne temperate lambdoid bacteriophages from different immunity groups: a high incidence of cor+, FhuA-dependent phages. Archives of Virology, 2008, 153, 1271-1280.	0.9	10
70	OILâ€REMOVAL ENHANCEMENT IN MEDIA WITH KERATINOUS OR CHITINOUS WASTES BY HYDROCARBONâ€DEGRADING BACTERIA ISOLATED FROM OILâ€POLLUTED SOILS. Environmental Technology (United Kingdom), 2008, 29, 171-182.	1.2	20
71	CAPN10 mRNA splicing and decay is not affected by a SNP associated with susceptibility to type 2 diabetes. Biochemical and Biophysical Research Communications, 2007, 358, 831-836.	1.0	3
72	The transcription of MGAT4A glycosyl transferase is increased in white cells of peripheral blood of Type 2 Diabetes patients. BMC Genetics, 2007, 8, 73.	2.7	9

#	Article	IF	Citations
73	The KH and S1 domains of Escherichia coli polynucleotide phosphorylase are necessary for autoregulation and growth at low temperature. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2007, 1769, 194-203.	2.4	34
74	Polynucleotide phosphorylase interacts with ribonuclease E through aÂββαβα domain. Biochimie, 2006, 88, 725-735.	1.3	8
7 5	Impact of long-term partial aeration on the removal of 2,4,6-trichlorophenol in an initially methanogenic fluidized bed bioreactor. Biotechnology and Bioengineering, 2006, 94, 949-960.	1.7	13
76	2,4,6-Trichlorophenol and phenol removal in methanogenic and partially-aerated methanogenic conditions in a fluidized bed bioreactor. Journal of Chemical Technology and Biotechnology, 2005, 80, 1180-1187.	1.6	33
77	A PCR method for the detection and differentiation of Lentinus edodes and Trametes versicolor in defined-mixed cultures used for wastewater treatment. Applied Microbiology and Biotechnology, 2005, 67, 524-531.	1.7	3
78	Polynucleotide phosphorylase-based photometric assay for inorganic phosphate. Analytical Biochemistry, 2004, 327, 209-214.	1,1	14
79	Genetic and Biochemical Strategies to Elucidate the Architecture and Targets of a Processive Transcription Antiterminator from Bacteriophage Lambda. Methods in Enzymology, 2003, 371, 438-459.	0.4	2
80	Polynucleotide phosphorylase binds to ssRNA with same affinity as to ssDNA. Biochimie, 2002, 84, 321-328.	1.3	12
81	A novel mutation in the KH domain of polynucleotide phosphorylase affects autoregulation and mRNA decay in Escherichia coli. Molecular Microbiology, 1999, 33, 235-248.	1.2	43
82	Components of multiprotein-RNA complex that controls transcription elongation in Escherichia coli phage lambda. Methods in Enzymology, 1996, 274, 374-402.	0.4	19
83	Interaction between the phage HK022 Nun protein and the nut RNA of phage lambda Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 12131-12135.	3.3	52
84	Bipartite function of a small RNA hairpin in transcription antitermination in bacteriophage lambda Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 4061-4065.	3.3	105
85	Expectations of Treatment of Hepatitis C in Children. West Indian Medical Journal, 0, , .	0.4	0
86	Treatment of Hepatitis C According to Regional Treatment Guidelines. West Indian Medical Journal, 0, ,	0.4	0
87	The Vaginal and Fecal Microbiota associated to cervical cancer development in a mice model , 0, , .		0
88	Characterization of the plant-associated bacterial microbiota of the Mexican medicinal species & many; amp; because the many; because the many; because the medicinal species amp; because the		0
89	Variation of the human milk bacterial diversity during the time of the day , 0, , .		0
90	Concentration of short chain fatty acids produced by gut microbiota are related with cognitive dysfunction in a murine model of Alzheimer´s disease. , 0 , , .		0

#	Article	lF	CITATIONS
91	Characterization of the food microbiota in ready-to-eat Mexican foods , 0, , .		O
92	Improvement of methane yield using bioaugmentation technique in a thermophilic anaerobic digestion process , 0, , .		0