Lucia Grenga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/267914/publications.pdf Version: 2024-02-01

LUCIA ODENICA

#	Article	IF	CITATIONS
1	Proteotyping SARS-CoV-2 Virus from Nasopharyngeal Swabs: A Proof-of-Concept Focused on a 3 Min Mass Spectrometry Window. Journal of Proteome Research, 2020, 19, 4407-4416.	3.7	90
2	Evaluation of Sample Preparation Methods for Fast Proteotyping of Microorganisms by Tandem Mass Spectrometry. Frontiers in Microbiology, 2019, 10, 1985.	3.5	69
3	Shortlisting SARSâ€CoVâ€2 Peptides for Targeted Studies from Experimental Dataâ€Dependent Acquisition Tandem Mass Spectrometry Data. Proteomics, 2020, 20, e2000107.	2.2	64
4	Shotgun proteomics analysis of SARS-CoV-2-infected cells and how it can optimize whole viral particle antigen production for vaccines. Emerging Microbes and Infections, 2020, 9, 1712-1721.	6.5	62
5	Adaptive Remodeling of the Bacterial Proteome by Specific Ribosomal Modification Regulates Pseudomonas Infection and Niche Colonisation. PLoS Genetics, 2016, 12, e1005837.	3.5	53
6	Pathogen proteotyping: A rapidly developing application of mass spectrometry to address clinical concerns. Clinical Mass Spectrometry, 2019, 14, 9-17.	1.9	49
7	One ligand, two regulators and three binding sites: How KDPG controls primary carbon metabolism in Pseudomonas. PLoS Genetics, 2017, 13, e1006839.	3.5	39
8	Quick change: post-transcriptional regulation in Pseudomonas. FEMS Microbiology Letters, 2017, 364, .	1.8	31
9	Pan-genome analysis identifies intersecting roles for Pseudomonas specialized metabolites in potato pathogen inhibition. ELife, 2021, 10, .	6.0	25
10	Quick microbial molecular phenotyping by differential shotgun proteomics. Environmental Microbiology, 2020, 22, 2996-3004.	3.8	24
11	The <i>Escherichia coli</i> FtsK functional domains involved in its interaction with its divisome protein partners. FEMS Microbiology Letters, 2008, 287, 163-167.	1.8	23
12	Taxonomical and functional changes in <scp>COVID</scp> â€19 faecal microbiome could be related to <scp>SARSâ€CoV</scp> â€2 faecal load. Environmental Microbiology, 2022, 24, 4299-4316.	3.8	20
13	Proteomics in the COVIDâ€19 Battlefield: First Semester Checkâ€Up. Proteomics, 2021, 21, 2000198.	2.2	18
14	Analyzing the Complex Regulatory Landscape of Hfq – an Integrative, Multi-Omics Approach. Frontiers in Microbiology, 2017, 8, 1784.	3.5	17
15	Control of mRNA translation by dynamic ribosome modification. PLoS Genetics, 2020, 16, e1008837.	3.5	13
16	Metaproteomics to Decipher CF Host-Microbiota Interactions: Overview, Challenges and Future Perspectives. Genes, 2021, 12, 892.	2.4	10
17	Heterogeneity of SARS-CoV-2 virus produced in cell culture revealed by shotgun proteomics and supported by genome sequencing. Analytical and Bioanalytical Chemistry, 2021, 413, 7265-7275.	3.7	7
18	Front Cover: Shortlisting SARS oVâ€2 Peptides for Targeted Studies from Experimental Dataâ€Dependent Acquisition Tandem Mass Spectrometry Data. Proteomics, 2020, 20, 2070111.	2.2	2

Lucia Grenga

#	Article	IF	CITATIONS
19	Front Cover: Proteomics in the COVIDâ€19 Battlefield: First Semester Checkâ€Up. Proteomics, 2021, 21, 2170001.	2.2	1
20	Characterisation of the MutS and MutL Proteins from the Pseudomonas avellanae Mismatch Repair (MMR) System. Open Microbiology Journal, 2012, 6, 45-52.	0.7	1
21	Control of mRNA translation by dynamic ribosome modification. , 2020, 16, e1008837.		Ο
22	Control of mRNA translation by dynamic ribosome modification. , 2020, 16, e1008837.		0
23	Control of mRNA translation by dynamic ribosome modification. , 2020, 16, e1008837.		Ο
24	Profiling SARS-CoV-2 Infection by High-Throughput Shotgun Proteomics. Methods in Molecular Biology, 2022, 2452, 167-182.	0.9	0