Sébastien Perrier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/26791/publications.pdf

Version: 2024-02-01

285 papers 18,888 citations

14655 66 h-index 125 g-index

295 all docs 295 docs citations

times ranked

295

14138 citing authors

#	Article	IF	CITATIONS
1	Aggregationâ€Induced Emission Featured Supramolecular Tubisomes for Imagingâ€Guided Drug Delivery. Angewandte Chemie, 2022, 134, .	2.0	5
2	Putting the RAFT in GRAFT: intermolecular graft exchange between bottlebrush polymers using reversible addition–fragmentation chain transfer. Polymer Chemistry, 2022, 13, 479-484.	3.9	7
3	Aggregationâ€Induced Emission Featured Supramolecular Tubisomes for Imagingâ€Guided Drug Delivery. Angewandte Chemie - International Edition, 2022, 61, .	13.8	25
4	Bottlebrush copolymers for gene delivery: influence of architecture, charge density, and backbone length on transfection efficiency. Journal of Materials Chemistry B, 2022, 10, 3696-3704.	5.8	9
5	Polymeric Nanotubes as Drug Delivery Vectors─Comparison of Covalently and Supramolecularly Assembled Constructs. Biomacromolecules, 2022, 23, 2315-2328.	5.4	5
6	Evaluation of the Antimicrobial Activity in Host-Mimicking Media and <i>In Vivo</i> Toxicity of Antimicrobial Polymers as Functional Mimics of AMPs. ACS Applied Materials & Diterfaces, 2022, 14, 32855-32868.	8.0	12
7	Polymerization-induced self-assembly via RAFT in emulsion: effect of Z-group on the nucleation step. Polymer Chemistry, 2021, 12, 122-133.	3.9	29
8	Introduction to polymerisation-induced self assembly. Polymer Chemistry, 2021, 12, 8-11.	3.9	19
9	Comparative Study of the Cellular Uptake and Intracellular Behavior of a Library of Cyclic Peptide–Polymer Nanotubes with Different Self-Assembling Properties. Biomacromolecules, 2021, 22, 710-722.	5 . 4	9
10	Efficient Artificial Light-Harvesting System Based on Supramolecular Peptide Nanotubes in Water. Journal of the American Chemical Society, 2021, 143, 382-389.	13.7	111
11	100th Anniversary of Macromolecular Science Viewpoint: User's Guide to Supramolecular Peptide–Polymer Conjugates. ACS Macro Letters, 2021, 10, 258-271.	4.8	12
12	<i>In situ</i> monitoring of PISA morphologies. Polymer Chemistry, 2021, 12, 3947-3952.	3.9	26
13	Fluorinated nanotubes: synthesis and self-assembly of cyclic peptide–poly(vinylidene fluoride) conjugates. Polymer Chemistry, 2021, 12, 4235-4243.	3.9	2
14	Manganese-Catalyzed Batch and Continuous Flow Cationic RAFT Polymerization Induced by Visible Light. ACS Macro Letters, 2021, 10, 570-575.	4.8	19
15	Molecular Self-Assembly and Supramolecular Chemistry of Cyclic Peptides. Chemical Reviews, 2021, 121, 13936-13995.	47.7	82
16	Characterization Across a Dispersity: Polymer Mass Spectrometry in the Second Dimension. Journal of the American Society for Mass Spectrometry, 2021, 32, 2153-2161.	2.8	5
17	Bis(trithiocarbonate) Disulfides: From Chain Transfer Agent Precursors to Iniferter Control Agents in RAFT Polymerization. Macromolecules, 2021, 54, 6649-6661.	4.8	22
18	Dual pH-Responsive Macrophage-Targeted Isoniazid Glycoparticles for Intracellular Tuberculosis Therapy. Biomacromolecules, 2021, 22, 3756-3768.	5.4	12

#	Article	IF	Citations
19	Synthesis of Multicompositional Onionâ€ike Nanoparticles via RAFT Emulsion Polymerization. Angewandte Chemie, 2021, 133, 23469.	2.0	2
20	Synthesis of Multicompositional Onionâ€ike Nanoparticles via RAFT Emulsion Polymerization. Angewandte Chemie - International Edition, 2021, 60, 23281-23288.	13.8	16
21	RAFT Emulsion Polymerization for (Multi)block Copolymer Synthesis: Overcoming the Constraints of Monomer Order. Macromolecules, 2021, 54, 736-746.	4.8	36
22	Tubular supramolecular alternating copolymers fabricated by cyclic peptide–polymer conjugates. Chemical Science, 2021, 12, 9096-9103.	7.4	10
23	Dose- and time-dependent tolerability and efficacy of organo-osmium complex FY26 and its tissue pharmacokinetics in hepatocarcinoma-bearing mice. Metallomics, 2021, 13, .	2.4	6
24	Cationic Bottlebrush Copolymers from Partially Hydrolyzed Poly(oxazoline)s. Macromolecules, 2021, 54, 9461-9473.	4.8	9
25	Branched and Dendritic Polymer Architectures: Functional Nanomaterials for Therapeutic Delivery. Advanced Functional Materials, 2020, 30, 1901001.	14.9	109
26	Fluorescent Supramolecular Polymersomes Based on Pillararene/Paraquat Molecular Recognition for pH-controlled Drug Release. Chinese Journal of Polymer Science (English Edition), 2020, 38, 1-8.	3.8	16
27	Controlled radical polymerization in dispersed systems for biological applications. Progress in Polymer Science, 2020, 102, 101209.	24.7	72
28	PCR-RAFT: rapid high throughput oxygen tolerant RAFT polymer synthesis in a biology laboratory. Polymer Chemistry, 2020, 11, 1230-1236.	3.9	20
29	A guide to supramolecular polymerizations. Polymer Chemistry, 2020, 11, 1083-1110.	3.9	99
30	Electron Capture Dissociation of Trithiocarbonate-Terminated Acrylamide Homo- and Copolymers: A Terminus-Directed Mechanism?. Analytical Chemistry, 2020, 92, 12852-12859.	6.5	6
31	Production of Peroxy Radicals from the Photochemical Reaction of Fatty Acids at the Air–Water Interface. ACS Earth and Space Chemistry, 2020, 4, 1247-1253.	2.7	9
32	Low-Dispersity Polymers in <i>Ab Initio</i> Emulsion Polymerization: Improved MacroRAFT Agent Performance in Heterogeneous Media. Macromolecules, 2020, 53, 7672-7683.	4.8	29
33	The type VII secretion system protects Staphylococcus aureus against antimicrobial host fatty acids. Scientific Reports, 2020, 10, 14838.	3.3	23
34	Exploring precision polymers to fine-tune magnetic resonance imaging properties of iron oxide nanoparticles. Journal of Colloid and Interface Science, 2020, 579, 401-411.	9.4	9
35	Hierarchical Selfâ€Assembled Photoâ€Responsive Tubisomes from a Cyclic Peptideâ€Bridged Amphiphilic Block Copolymer. Angewandte Chemie, 2020, 132, 8945-8948.	2.0	9
36	Atmospheric Photosensitization: A New Pathway for Sulfate Formation. Environmental Science & Environmental Science & Technology, 2020, 54, 3114-3120.	10.0	65

#	Article	IF	CITATIONS
37	Orthogonal Cationic and Radical RAFT Polymerizations to Prepare Bottlebrush Polymers. Angewandte Chemie, 2020, 132, 7270-7275.	2.0	9
38	Manganese carbonyl induced cationic reversible addition–fragmentation chain transfer (C-RAFT) polymerization under visible light. Polymer Chemistry, 2020, 11, 2724-2731.	3.9	20
39	Orthogonal Cationic and Radical RAFT Polymerizations to Prepare Bottlebrush Polymers. Angewandte Chemie - International Edition, 2020, 59, 7203-7208.	13.8	40
40	Hierarchical Selfâ€Assembled Photoâ€Responsive Tubisomes from a Cyclic Peptideâ€Bridged Amphiphilic Block Copolymer. Angewandte Chemie - International Edition, 2020, 59, 8860-8863.	13.8	57
41	Heparinâ€Mimicking Sulfonated Polymer Nanoparticles via RAFT Polymerizationâ€Induced Selfâ€Assembly. Macromolecular Rapid Communications, 2019, 40, e1800314.	3.9	32
42	Well-Defined Alkyl Functional Poly(Styrene- <i>co</i> -Maleic Anhydride) Architectures as Pour Point and Viscosity Modifiers for Lubricating Oil. Energy & Samp; Fuels, 2019, 33, 7257-7264.	5.1	23
43	Exploitation of the Nanoreactor Concept for Efficient Synthesis of Multiblock Copolymers via MacroRAFT-Mediated Emulsion Polymerization. ACS Macro Letters, 2019, 8, 989-995.	4.8	67
44	Dual self-assembly of supramolecular peptide nanotubes to provide stabilisation in water. Nature Communications, 2019, 10, 4708.	12.8	63
45	Pyridyl Disulfide Reaction Chemistry: An Efficient Strategy toward Redox-Responsive Cyclic Peptide–Polymer Conjugates. ACS Macro Letters, 2019, 8, 1347-1352.	4.8	26
46	Hyperbranched poly(ethylenimine- <i>co</i> -oxazoline) by thiolâ€"yne chemistry for non-viral gene delivery: investigating the role of polymer architecture. Polymer Chemistry, 2019, 10, 1202-1212.	3.9	42
47	Polydimethylsiloxane-Based Giant Glycosylated Polymersomes with Tunable Bacterial Affinity. Biomacromolecules, 2019, 20, 1297-1307.	5.4	14
48	Tuning the Structure, Stability, and Responsivity of Polymeric Arsenical Nanoparticles Using Polythiol Cross-Linkers. Macromolecules, 2019, 52, 992-1003.	4.8	13
49	Exploitation of Compartmentalization in RAFT Miniemulsion Polymerization to Increase the Degree of Livingness. Journal of Polymer Science Part A, 2019, 57, 1938-1946.	2.3	31
50	Visible light induced controlled cationic polymerization by <i>in situ</i> generated catalyst from manganese carbonyl. Chemical Communications, 2019, 55, 7045-7048.	4.1	23
51	Targeting intracellular, multi-drug resistant Staphylococcus aureus with guanidinium polymers by elucidating the structure-activity relationship. Biomaterials, 2019, 217, 119249.	11.4	47
52	Stimuli-responsive membrane activity of cyclic-peptide–polymer conjugates. Chemical Science, 2019, 10, 5476-5483.	7.4	32
53	Shaping block copolymer micelles by supramolecular polymerization: making  tubisomes'. Polymer Chemistry, 2019, 10, 2616-2625.	3.9	16
54	Supramolecular switching of the self-assembly of cyclic peptide–polymer conjugates ⟨i⟩via⟨ i⟩ host–guest chemistry. Chemical Communications, 2019, 55, 5291-5294.	4.1	31

#	Article	IF	CITATIONS
55	Role of Na ₂ CO ₃ on an AISI 330 austenitic stainless steels oxidation at 900°C. Materials and Corrosion - Werkstoffe Und Korrosion, 2019, 70, 1416-1425.	1.5	4
56	Nano-Engineered Multiblock Copolymer Nanoparticles via Reversible Addition–Fragmentation Chain Transfer Emulsion Polymerization. Macromolecules, 2019, 52, 2965-2974.	4.8	54
57	Microscale synthesis of multiblock copolymers using ultrafast RAFT polymerisation. Polymer Chemistry, 2019, 10, 1186-1191.	3.9	25
58	A study on the preparation of alkyne functional nanoparticles <i>via</i> RAFT emulsion polymerisation. Polymer Chemistry, 2019, 10, 1452-1459.	3.9	12
59	Polymeric arsenicals as scaffolds for functional and responsive hydrogels. Journal of Materials Chemistry B, 2019, 7, 4263-4271.	5.8	4
60	Real-Time Detection of Gas-Phase Organohalogens from Aqueous Photochemistry Using Orbitrap Mass Spectrometry. ACS Earth and Space Chemistry, 2019, 3, 329-334.	2.7	15
61	Visualizing reaction and diffusion in xanthan gum aerosol particles exposed to ozone. Physical Chemistry Chemical Physics, 2019, 21, 20613-20627.	2.8	15
62	Polymerizationâ€Induced Selfâ€Assembly under Compressed CO ₂ : Control of Morphology Using a CO ₂ â€Responsive MacroRAFT Agent. Macromolecular Rapid Communications, 2019, 40, e1800335.	3.9	36
63	Sulfonated Copolymers as Heparin-Mimicking Stabilizer of Fibroblast Growth Factor: Size, Architecture, and Monomer Distribution Effects. Biomacromolecules, 2019, 20, 285-293.	5.4	13
64	Influence of Grafting Density and Distribution on Material Properties Using Well-Defined Alkyl Functional Poly(Styrene- <i>co</i> -Maleic Anhydride) Architectures Synthesized by RAFT. Macromolecules, 2019, 52, 1469-1478.	4.8	24
65	Imaging Proton Transport in Giant Vesicles through Cyclic Peptide–Polymer Conjugate Nanotube Transmembrane Ion Channels. Macromolecular Rapid Communications, 2018, 39, e1700831.	3.9	9
66	Synthesis of Subâ€100 nm Glycosylated Nanoparticles via a One Step, Free Radical, and Surfactant Free Emulsion Polymerization. Macromolecular Rapid Communications, 2018, 39, e1800122.	3.9	4
67	Cyclic peptide-poly(HPMA) nanotubes as drug delivery vectors: InÂvitro assessment, pharmacokinetics and biodistribution. Biomaterials, 2018, 178, 570-582.	11.4	47
68	Probing the Dynamic Nature of Selfâ€Assembling Cyclic Peptide–Polymer Nanotubes in Solution and in Mammalian Cells. Advanced Functional Materials, 2018, 28, 1704569.	14.9	39
69	Cyclic Peptide–Polymer Nanotubes as Efficient and Highly Potent Drug Delivery Systems for Organometallic Anticancer Complexes. Biomacromolecules, 2018, 19, 239-247.	5.4	74
70	Branched poly (trimethylphosphonium ethylacrylateâ€∢i>coâ€PEGA) by RAFT: alternative to cationic polyammoniums for nucleic acid complexation. Journal of Interdisciplinary Nanomedicine, 2018, 3, 164-174.	3.6	8
71	Reverse-phase high performance liquid chromatography (RP-HPLC) as a powerful tool to characterise complex water-soluble copolymer architectures. Polymer Chemistry, 2018, 9, 5511-5520.	3.9	7
72	Australian European Selfâ€Assembly through Macromolecular Interactions II. Macromolecular Rapid Communications, 2018, 39, e1800556.	3.9	0

#	Article	IF	CITATIONS
73	Secondary Selfâ€Assembly of Supramolecular Nanotubes into Tubisomes and Their Activity on Cells. Angewandte Chemie, 2018, 130, 16920-16924.	2.0	9
74	Hydrogel and Organogel Formation by Hierarchical Selfâ€Assembly of Cyclic Peptides Nanotubes. Chemistry - A European Journal, 2018, 24, 19066-19074.	3.3	32
75	Secondary Selfâ€Assembly of Supramolecular Nanotubes into Tubisomes and Their Activity on Cells. Angewandte Chemie - International Edition, 2018, 57, 16678-16682.	13.8	45
76	Coupling Electron Capture Dissociation and the Modified Kendrick Mass Defect for Sequencing of a Poly(2-ethyl-2-oxazoline) Polymer. Analytical Chemistry, 2018, 90, 11710-11715.	6.5	11
77	Cationic and hydrolysable branched polymers by RAFT for complexation and controlled release of dsRNA. Polymer Chemistry, 2018, 9, 4025-4035.	3.9	29
78	Optimization of energy transfer in a polymer composite with perylene chromophores. Journal of Materials Chemistry C, 2018, 6, 7333-7342.	5.5	7
79	Systematic study of the structural parameters affecting the self-assembly of cyclic peptide–poly(ethylene glycol) conjugates. Soft Matter, 2018, 14, 6320-6326.	2.7	24
80	Efficient Binding, Protection, and Self-Release of dsRNA in Soil by Linear and Star Cationic Polymers. ACS Macro Letters, 2018, 7, 909-915.	4.8	28
81	On the Use of Redox Initiation in Aqueous RAFT Polymerisation. ACS Symposium Series, 2018, , 57-79.	0.5	3
82	RAFT Emulsion Polymerization as a Platform to Generate Wellâ€Defined Biocompatible Latex Nanoparticles. Macromolecular Bioscience, 2018, 18, e1800213.	4.1	22
83	Particle-Phase Photosensitized Radical Production and Aerosol Aging. Environmental Science & Emp; Technology, 2018, 52, 7680-7688.	10.0	45
84	Investigating Cell Uptake of Guanidinium-Rich RAFT Polymers: Impact of Comonomer and Monomer Distribution. Biomacromolecules, 2018, 19, 3190-3200.	5.4	26
85	Well-defined hyperstar copolymers based on a thiol–yne hyperbranched core and a poly(2-oxazoline) shell for biomedical applications. Polymer Chemistry, 2017, 8, 2041-2054.	3.9	32
86	Polymerization induced self-assembly: tuning of morphology using ionic strength and pH. Polymer Chemistry, 2017, 8, 3082-3089.	3.9	62
87	Specific and Differential Binding of <i>N</i> -Acetylgalactosamine Glycopolymers to the Human Macrophage Galactose Lectin and Asialoglycoprotein Receptor. Biomacromolecules, 2017, 18, 1624-1633.	5.4	32
88	Looped flow RAFT polymerization for multiblock copolymer synthesis. Polymer Chemistry, 2017, 8, 3249-3254.	3.9	45
89	Development of a Gemcitabine-Polymer Conjugate with Prolonged Cytotoxicity against a Pancreatic Cancer Cell Line. ACS Macro Letters, 2017, 6, 535-540.	4.8	24
90	Functional multisite copolymer by one-pot sequential RAFT copolymerization of styrene and maleic anhydride. Polymer Chemistry, 2017, 8, 4152-4161.	3.9	26

#	Article	IF	CITATIONS
91	Parallel and antiparallel cyclic <scp>d</scp> / <scp>l</scp> peptide nanotubes. Chemical Communications, 2017, 53, 6613-6616.	4.1	36
92	Interfacial photochemistry of biogenic surfactants: a major source of abiotic volatile organic compounds. Faraday Discussions, 2017, 200, 59-74.	3.2	42
93	Fluorescent Labeling and Biodistribution of Latex Nanoparticles Formed by Surfactantâ€Free RAFT Emulsion Polymerization. Macromolecular Bioscience, 2017, 17, 1600366.	4.1	26
94	Sequence Control as a Powerful Tool for Improving the Selectivity of Antimicrobial Polymers. ACS Applied Materials & Distribution (2017), 9, 40117-40126.	8.0	83
95	Fatty Acid Surfactant Photochemistry Results in New Particle Formation. Scientific Reports, 2017, 7, 12693.	3.3	37
96	Complex multiblock bottle-brush architectures by RAFT polymerization. Chemical Communications, 2017, 53, 11901-11904.	4.1	48
97	<i>>50th Anniversary Perspective</i> : RAFT Polymerizationâ€"A User Guide. Macromolecules, 2017, 50, 7433-7447.	4.8	1,007
98	SuFEx – a selectively triggered chemistry for fast, efficient and equimolar polymer–polymer coupling reactions. Polymer Chemistry, 2017, 8, 7475-7485.	3.9	27
99	Evolution of Microphase Separation with Variations of Segments of Sequence-Controlled Multiblock Copolymers. Macromolecules, 2017, 50, 7380-7387.	4.8	44
100	Stepwise Lightâ€Induced Dual Compaction of Singleâ€Chain Nanoparticles. Macromolecular Rapid Communications, 2017, 38, 1700264.	3.9	18
101	Anionic multiblock core cross-linked star copolymers via RAFT polymerization. Polymer Chemistry, 2017, 8, 5513-5524.	3.9	35
102	pH-Responsive, Amphiphilic Core–Shell Supramolecular Polymer Brushes from Cyclic Peptide–Polymer Conjugates. ACS Macro Letters, 2017, 6, 1347-1351.	4.8	46
103	Beneficial Effect of a Pre-ceramic Polymer Coating on the Protection at 900°C of a Commercial AISI 304 Stainless Steel. Oxidation of Metals, 2017, 88, 211-220.	2.1	12
104	Self-assembly and disassembly of stimuli responsive tadpole-like single chain nanoparticles using a switchable hydrophilic/hydrophobic boronic acid cross-linker. Polymer Chemistry, 2017, 8, 4079-4087.	3.9	34
105	Antimicrobial Polymers: Mimicking Amino Acid Functionali ty, Sequence Control and Three-dimensional Structure of Host-defen se Peptides. Current Medicinal Chemistry, 2017, 24, 2115-2140.	2.4	31
106	Peptide–Polymer Conjugates: Synthetic Design Strategies. , 2017, , 1289-1303.		0
107	Influence of Block versus Random Monomer Distribution on the Cellular Uptake of Hydrophilic Copolymers. ACS Macro Letters, 2016, 5, 1416-1420.	4.8	12
108	Synthesis of polymers and nanoparticles bearing polystyrene sulfonate brushes for chemokine binding. Organic and Biomolecular Chemistry, 2016, 14, 5652-5658.	2.8	9

#	Article	IF	Citations
109	Synthesis of mannosylated and PEGylated nanoparticles via RAFT emulsion polymerisation, and investigation of particle-lectin aggregation using turbidimetric and DLS techniques. Polymer, 2016, 106, 229-237.	3.8	25
110	Surface-initiated SET living radical polymerisation for the synthesis of silica–polymer core–shell nanoparticles. Polymer Chemistry, 2016, 7, 6075-6083.	3.9	16
111	Single addition of an allylamine monomer enables access to end-functionalized RAFT polymers for native chemical ligation. Chemical Communications, 2016, 52, 12952-12955.	4.1	15
112	Tunable Length of Cyclic Peptide–Polymer Conjugate Self-Assemblies in Water. ACS Macro Letters, 2016, 5, 1119-1123.	4.8	48
113	Efficient click-addition sequence for polymer–polymer couplings. Polymer Chemistry, 2016, 7, 5536-5543.	3.9	24
114	Poly(bromoethyl acrylate): A Reactive Precursor for the Synthesis of Functional RAFT Materials. Macromolecules, 2016, 49, 6203-6212.	4.8	34
115	Organosulfate Formation through the Heterogeneous Reaction of Sulfur Dioxide with Unsaturated Fatty Acids and Longâ€Chain Alkenes. Angewandte Chemie, 2016, 128, 10492-10495.	2.0	2
116	Energy transfer in pendant perylene diimide copolymers. Journal of Materials Chemistry C, 2016, 4, 8270-8275.	5.5	27
117	Mechanistic Insights on the Photosensitized Chemistry of a Fatty Acid at the Air/Water Interface. Environmental Science & Envi	10.0	64
118	Organosulfate Formation through the Heterogeneous Reaction of Sulfur Dioxide with Unsaturated Fatty Acids and Longâ€Chain Alkenes. Angewandte Chemie - International Edition, 2016, 55, 10336-10339.	13.8	63
119	Study of (Cyclic Peptide)–Polymer Conjugate Assemblies by Smallâ€Angle Neutron Scattering. Chemistry - A European Journal, 2016, 22, 18419-18428.	3.3	16
120	Synthesis of Sequence-Controlled Multiblock Single Chain Nanoparticles by a Stepwise Folding–Chain Extension–Folding Process. Macromolecules, 2016, 49, 8933-8942.	4.8	46
121	Australian European Selfâ€Assembly through Macromolecular Interactions. Macromolecular Chemistry and Physics, 2016, 217, 2207-2208.	2.2	1
122	Cyclic peptide–polymer conjugates: Graftingâ€ŧo vs graftingâ€from. Journal of Polymer Science Part A, 2016, 54, 1003-1011.	2.3	49
123	SO ₂ Uptake on Oleic Acid: A New Formation Pathway of Organosulfur Compounds in the Atmosphere. Environmental Science and Technology Letters, 2016, 3, 67-72.	8.7	56
124	Hyperbranched Polymers with High Degrees of Branching and Low Dispersity Values: Pushing the Limits of Thiol–Yne Chemistry. Macromolecules, 2016, 49, 1296-1304.	4.8	69
125	The limits of precision monomer placement in chain growth polymerization. Nature Communications, 2016, 7, 10514.	12.8	141
126	Preparation of Inert Polystyrene Latex Particles as MicroRNA Delivery Vectors by Surfactant-Free RAFT Emulsion Polymerization. Biomacromolecules, 2016, 17, 965-973.	5.4	26

#	Article	IF	Citations
127	A New Methodology for Assessing Macromolecular Click Reactions and Its Application to Amine–Tertiary Isocyanate Coupling for Polymer Ligation. Journal of the American Chemical Society, 2016, 138, 4061-4068.	13.7	49
128	Reversible Addition-Fragmentation Chain Transfer Polymerization from Surfaces. Advances in Polymer Science, 2015, , 77-106.	0.8	8
129	Polymerization induced self-assembly: tuning of nano-object morphology by use of CO ₂ . Polymer Chemistry, 2015, 6, 2249-2254.	3.9	65
130	Selective Patterning of Gold Surfaces by Core/Shell, Semisoft Hybrid Nanoparticles. Small, 2015, 11, 482-488.	10.0	6
131	Photosensitized Production of Atmospherically Reactive Organic Compounds at the Air/Aqueous Interface. Journal of the American Chemical Society, 2015, 137, 8348-8351.	13.7	97
132	Design, synthesis and thermal behaviour of a series of well-defined clickable and triggerable sulfonate polymers. RSC Advances, 2015, 5, 66554-66562.	3.6	23
133	Well-defined colloidal crystal films from the 2D self-assembly of core–shell semi-soft nanoparticles. Polymer Chemistry, 2015, 6, 7297-7307.	3.9	8
134	Preparation of complex multiblock copolymers via aqueous RAFT polymerization at room temperature. Polymer Chemistry, 2015, 6, 4875-4886.	3.9	92
135	Silica core–polystyrene shell nanoparticle synthesis and assembly in three dimensions. Nanoscale, 2015, 7, 19036-19046.	5.6	16
136	Controlled/Living Radical Polymerization in Dispersed Systems: An Update. Chemical Reviews, 2015, 115, 9745-9800.	47.7	393
137	Effect of the amino acid composition of cyclic peptides on their self-assembly in lipid bilayers. Organic and Biomolecular Chemistry, 2015, 13, 2464-2473.	2.8	26
138	Ultrafast RAFT polymerization: multiblock copolymers within minutes. Polymer Chemistry, 2015, 6, 1502-1511.	3.9	130
139	Smart hybrid materials by conjugation of responsive polymers to biomacromolecules. Nature Materials, 2015, 14, 143-159.	27.5	512
140	Influence of water vapour on 316L oxidation at high temperature - in situ X-Ray diffraction. Annales De Chimie: Science Des Materiaux, 2015, 39, 107-114.	0.4	3
141	Influence of Lanthanum Coatings on a Model 330 Alloy (Fe–35Ni–18Cr–2Si) Oxidation at High Temperatures. Oxidation of Metals, 2014, 81, 127-138.	2.1	3
142	Lanthanum Effect on the Isothermal High Temperature Oxidation Behavior at 1,000°C of a Phosphoric Acid-Treated AISI 304 Stainless Steel. Oxidation of Metals, 2014, 81, 191-201.	2.1	5
143	Fluorescent bowl-shaped nanoparticles from â€~clicked' porphyrin–polymer conjugates. Polymer Chemistry, 2014, 5, 4016-4021.	3.9	30
144	Optimization of the RAFT polymerization conditions for the in situ formation of nano-objects via dispersion polymerization in alcoholic medium. Polymer Chemistry, 2014, 5, 6990-7003.	3.9	101

#	Article	IF	Citations
145	Drug Conjugation to Cyclic Peptide–Polymer Selfâ€Assembling Nanotubes. Chemistry - A European Journal, 2014, 20, 12745-12749.	3.3	44
146	Synthesis of Polystyrene-Based Hyperbranched Polymers by Thiol–Yne Chemistry: A Detailed Investigation. Macromolecules, 2014, 47, 6697-6705.	4.8	39
147	Hierarchical Assembly of Branched Supramolecular Polymers from (Cyclic Peptide)–Polymer Conjugates. Biomacromolecules, 2014, 15, 4002-4011.	5.4	8
148	Photonic porous silicon as a pH sensor. Nanoscale Research Letters, 2014, 9, 420.	5.7	23
149	Temperature- and pH-Responsive Micelles with Collapsible Poly(<i>N</i> -isopropylacrylamide) Headgroups. Langmuir, 2014, 30, 7986-7992.	3.5	36
150	Thermal Gating in Lipid Membranes Using Thermoresponsive Cyclic Peptide–Polymer Conjugates. Journal of the American Chemical Society, 2014, 136, 8018-8026.	13.7	85
151	Sequenceâ€Controlled Multiblock Copolymers via RAFT Polymerization: Modeling and Simulations. Macromolecular Theory and Simulations, 2014, 23, 331-339.	1.4	70
152	Exploitation of the Degenerative Transfer Mechanism in RAFT Polymerization for Synthesis of Polymer of High Livingness at Full Monomer Conversion. Macromolecules, 2014, 47, 639-649.	4.8	144
153	Pushing the Limit of the RAFT Process: Multiblock Copolymers by One-Pot Rapid Multiple Chain Extensions at Full Monomer Conversion. Macromolecules, 2014, 47, 3451-3460.	4.8	208
154	Tunable Selfâ€Assembly of Triazoleâ€Linked Porphyrin–Polymer Conjugates. Chemistry - A European Journal, 2013, 19, 12759-12770.	3.3	38
155	Hierarchical bicontinuous porosity in metal–organic frameworks templated from functional block co-oligomer micelles. Chemical Science, 2013, 4, 3573.	7.4	124
156	Effect of Oxidation with Lanthanum Sol–Gel Coating on the 330Cb Carburization at 900°C. Oxidation of Metals, 2013, 80, 467-478.	2.1	5
157	Monodisperse, Charge-Stabilized, Core–Shell Particles via Silica-Supported Reversible Addition–Fragmentation Chain Transfer Polymerization for Cell Imaging. Chemistry of Materials, 2013, 25, 3522-3527.	6.7	33
158	Synthesis of silica–polymer core–shell nanoparticles by reversible addition–fragmentation chain transfer polymerization. Chemical Communications, 2013, 49, 9077.	4.1	81
159	Hydroxyapatite Mineralization in the Presence of Anionic Polymers. Crystal Growth and Design, 2013, 13, 4252-4259.	3.0	40
160	Spatially Controlled Photochemical Peptide and Polymer Conjugation on Biosurfaces. Biomacromolecules, 2013, 14, 4340-4350.	5.4	46
161	Janus cyclic peptide–polymer nanotubes. Nature Communications, 2013, 4, 2780.	12.8	89
162	Rapid and quantitative one-pot synthesis of sequence-controlled polymers by radical polymerization. Nature Communications, 2013, 4, 2505.	12.8	403

#	Article	IF	CITATIONS
163	Structure elucidation and control of cyclic peptide-derived nanotube assemblies in solution. Chemical Science, 2013, 4, 2581.	7.4	52
164	Patterned chemisorption of proteins by thin polymer film dewetting. Soft Matter, 2013, 9, 2598.	2.7	17
165	Unexpected behavior of polydimethylsiloxane/poly(2-(dimethylamino)ethyl acrylate) (charged) amphiphilic block copolymers in aqueous solution. Polymer Chemistry, 2013, 4, 2140.	3.9	54
166	Plastic identification based on molecular and elemental information from laser induced breakdown spectra: a comparison of plasma conditions in view of efficient sorting. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2013, 88, 167-173.	2.9	38
167	Soil erosion by wind over tilled surfaces in South Tunisia. Geoderma, 2013, 202-203, 8-17.	5.1	25
168	A Facile Route to Functional Hyperbranched Polymers by Combining Reversible Addition–Fragmentation Chain Transfer Polymerization, Thiol–Yne Chemistry, and Postpolymerization Modification Strategies. ACS Macro Letters, 2013, 2, 366-370.	4.8	43
169	Thermoresponsive behavior of amphiphilic diblock co-oligomers of ethylene glycol and styrene in aqueous solution. Soft Matter, 2013, 9, 7007.	2.7	12
170	Multiâ€shell Soft Nanotubes from Cyclic Peptide Templates. Advanced Materials, 2013, 25, 1170-1172.	21.0	42
171	HMT production and sublimation during thermal process of cometary organic analogs. Implications for its detection with the ROSETTA instruments. Icarus, 2013, 226, 541-551.	2.5	16
172	Waterâ€Soluble and pHâ€Responsive Polymeric Nanotubes from Cyclic Peptide Templates. Chemistry - A European Journal, 2013, 19, 1955-1961.	3.3	48
173	Thermoresponsive cyclic peptide – poly(2-ethyl-2-oxazoline) conjugate nanotubes. Chemical Communications, 2013, 49, 6522.	4.1	42
174	The synthesis of well-defined poly(vinylbenzyl chloride)-grafted nanoparticles via RAFT polymerization. Beilstein Journal of Organic Chemistry, 2013, 9, 1226-1234.	2.2	28
175	33rd Australasian Polymer Symposium. Australian Journal of Chemistry, 2012, 65, 943.	0.9	0
176	Synthesis and Immunological Evaluation of Selfâ€Assembling and Selfâ€Adjuvanting Tricomponent Glycopeptide Cancerâ€Vaccine Candidates. Chemistry - A European Journal, 2012, 18, 16540-16548.	3.3	63
177	Assessment of the influence of microwave irradiation on conventional and RAFT radical polymerization of styrene. Polymer Chemistry, 2012, 3, 2801.	3.9	15
178	Pushing the limits of copper mediated azide–alkyne cycloaddition (CuAAC) to conjugate polymeric chains to cyclic peptides. Polymer Chemistry, 2012, 3, 1820.	3.9	36
179	Supramolecular hybrids of cellulose and synthetic polymers. Polymer Chemistry, 2012, 3, 3266.	3.9	14
180	Design and properties of functional nanotubes from the self-assembly of cyclic peptide templates. Chemical Society Reviews, 2012, 41, 6023.	38.1	265

#	Article	IF	CITATIONS
181	One-pot ATRP synthesis of a triple hydrophilic block copolymer with dual LCSTs and its thermo-induced association behavior. Soft Matter, 2012, 8, 9526.	2.7	29
182	Altering Peptide Fibrillization by Polymer Conjugation. Biomacromolecules, 2012, 13, 2739-2747.	5.4	29
183	Short chain amphiphilic diblock coâ€oligomers via RAFT polymerization. Journal of Polymer Science Part A, 2012, 50, 187-198.	2.3	23
184	New methods of polymer synthesis. Polymer Chemistry, 2012, 3, 1677.	3.9	13
185	RAFT Polymerization: A Powerful Tool for the Synthesis and Study of Oligomers. ACS Symposium Series, 2012, , 13-25.	0.5	3
186	One-Pot RAFT/"Click―Chemistry via Isocyanates: Efficient Synthesis of α-End-Functionalized Polymers. Journal of the American Chemical Society, 2012, 134, 12596-12603.	13.7	97
187	Self-assembling macromolecular chimeras: controlling fibrillization of a \hat{l}^2 -sheet forming peptide by polymer conjugation. Soft Matter, 2011, 7, 3754.	2.7	23
188	Surface-Initiated Reversible Addition–Fragmentation Chain Transfer (RAFT) Polymerization from Fine Particles Functionalized with Trithiocarbonates. Macromolecules, 2011, 44, 8944-8953.	4.8	140
189	Synthetic Strategies for the Design of Peptide/Polymer Conjugates. Polymer Reviews, 2011, 51, 214-234.	10.9	77
190	Modular design for the controlled production of polymeric nanotubes from polymer/peptide conjugates. Polymer Chemistry, 2011, 2, 1956.	3.9	81
191	Design of complex polymeric architectures and nanostructured materials/hybrids by living radical polymerization of hydroxylated monomers. Polymer Chemistry, 2011, 2, 270-288.	3.9	61
192	Origin of Initial Uncontrolled Polymerization and Its Suppression in the Copper(0)-Mediated Living Radical Polymerization of Methyl Acrylate in a Nonpolar Solvent. Macromolecules, 2011, 44, 8034-8041.	4.8	30
193	Hyperbranched alternating block copolymers using thiol–yne chemistry: materials with tuneable properties. Chemical Communications, 2011, 47, 239-241.	4.1	100
194	'Pseudo-star' Copolymers Formed by a Combination of RAFT Polymerization and Isocyanate-Coupling. Australian Journal of Chemistry, 2011, 64, 1047.	0.9	9
195	ABC of molecular origami. Nature Chemistry, 2011, 3, 194-196.	13.6	16
196	Investigation of polymer blends of polyamide-6 and poly(methyl methacrylate) synthesized by RAFT polymerization. Polymer Bulletin, 2011, 66, 1089-1098.	3.3	7
197	Construction of temperature responsive hybrid crosslinked selfâ€assemblies based on PEGâ€xi>bà6€P(MMAâ€xi>coà6€MPMA)â€xi>bà6€PNIPAAm triblock copolymer: ATRP synthesis and thermoinduced association behavior. Journal of Polymer Science Part A, 2011, 49, 1809-1820.	2.3	13
198	"Clickable―polymers via a combination of RAFT polymerization and isocyanate chemistry. Journal of Polymer Science Part A, 2011, 49, 2771-2782.	2.3	27

#	Article	IF	CITATIONS
199	Modulating catalytic activity of polymerâ€based cuAAC "click―reactions. Journal of Polymer Science Part A, 2011, 49, 4539-4548.	2.3	12
200	Modeling highly branched structures: Description of the solution structures of dendrimers, polyglycerol, and glycogen. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 1525-1538.	2.1	7
201	Copper(0)â€Mediated Living Radical Polymerization of Methyl Methacrylate in a Nonâ€polar Solvent. Macromolecular Rapid Communications, 2010, 31, 1276-1280.	3.9	53
202	Describing the Structure of a Randomly Hyperbranched Polymer. Macromolecular Theory and Simulations, 2010, 19, 219-227.	1.4	17
203	Poly(ethylene glycol) as a 'green solvent' for the RAFT polymerization of methyl methacrylate. Polymer, 2010, 51, 3836-3842.	3.8	30
204	Synthesis of a cellulose supported chain transfer agent and its application to RAFT polymerization. Journal of Polymer Science Part A, 2010, 48, 4361-4365.	2.3	42
205	'Green' reversible addition-fragmentation chain-transfer (RAFT) polymerization. Nature Chemistry, 2010, 2, 811-820.	13.6	264
206	The structure of randomly branched polymers synthesized by living radical methods. Polymer Chemistry, 2010, 1, 1067.	3.9	33
207	Synthesis of silica-polymer hybrids by combination of RAFT polymerization and azide-alkyne cycloaddition â€~click' reactions. Polymer Chemistry, 2010, 1, 1615.	3.9	55
208	Synthesis of Self-assembling Cyclic Peptide-polymer Conjugates using Click Chemistry. Australian Journal of Chemistry, 2010, 63, 1169.	0.9	51
209	Highly Branched and Hyperbranched Glycopolymers via Reversible Additionâ ²² Fragmentation Chain Transfer Polymerization and Click Chemistry. Macromolecules, 2010, 43, 1438-1443.	4.8	137
210	Copper(0)-mediated living radical polymerization of styrene. Polymer Chemistry, 2010, 1, 420-422.	3.9	63
211	Polymer–peptide chimeras for the multivalent display of immunogenic peptides. Chemical Communications, 2010, 46, 2188.	4.1	34
212	Rapid photochromic nanopatterns from block copolymers. Soft Matter, 2010, 6, 909-914.	2.7	19
213	RAFT polymerization kinetics: How long are the crossâ€terminating oligomers?. Journal of Polymer Science Part A, 2009, 47, 3455-3466.	2.3	82
214	Facile synthesis of starâ€shaped copolymers via combination of RAFT and ring opening polymerization. Journal of Polymer Science Part A, 2009, 47, 6396-6408.	2.3	38
215	Control of block copolymer morphology: An example of selective morphology induced by selfâ€assembly formation condition. Journal of Polymer Science Part A, 2009, 47, 6783-6788.	2.3	4
216	pH- and thermo-multi-responsive fluorescent micelles from block copolymers via reversible addition fragmentation chain transfer (RAFT) polymerization. Polymer, 2009, 50, 4151-4158.	3.8	46

#	Article	IF	CITATIONS
217	Cellulose modification by polymer grafting: a review. Chemical Society Reviews, 2009, 38, 2046.	38.1	884
218	Ordered Microphase Separation in Thin Films of PMMAâ^'PBA Synthesized by RAFT: Effect of Block Polydispersity. Macromolecules, 2009, 42, 3138-3146.	4.8	41
219	Solubilization and Functionalization of Cellulose Assisted by Microwave Irradiation. Australian Journal of Chemistry, 2009, 62, 223.	0.9	16
220	Obtaining Kinetic Information from the Chain-Length Distribution of Polymers Produced by RAFT. Journal of Physical Chemistry B, 2009, 113, 7086-7094.	2.6	48
221	Bioapplications of RAFT Polymerization. Chemical Reviews, 2009, 109, 5402-5436.	47.7	913
222	Searching for Stars: Selective Desulfurization and Fluorescence Spectroscopy as New Tools in the Search for Cross Termination Side-products in RAFT Polymerization. Australian Journal of Chemistry, 2009, 62, 1533.	0.9	19
223	Orthogonal "Relay―Reactions for Designing Functionalized Soft Nanoparticles. Journal of the American Chemical Society, 2009, 131, 1889-1895.	13.7	77
224	Hyperbranched Polymers by Thiolâ^'Yne Chemistry: From Small Molecules to Functional Polymers. Journal of the American Chemical Society, 2009, 131, 18075-18077.	13.7	280
225	The future of reversible addition fragmentation chain transfer polymerization. Journal of Polymer Science Part A, 2008, 46, 5715-5723.	2.3	265
226	Poly(ethylene glycol)â€based amphiphilic model conetworks: Synthesis by RAFT polymerization and characterization. Journal of Polymer Science Part A, 2008, 46, 7556-7565.	2.3	52
227	Antibacterial Cellulose Fiber via RAFT Surface Graft Polymerization. Biomacromolecules, 2008, 9, 91-99.	5.4	311
228	Successful Dispersion Polymerization in Supercritical CO ₂ Using Polyvinylalkylate Hydrocarbon Surfactants Synthesized and Anchored via RAFT. Journal of the American Chemical Society, 2008, 130, 12242-12243.	13.7	96
229	Synthesis of natural–synthetic hybrid materials from cellulose via the RAFT process. Soft Matter, 2008, 4, 145-155.	2.7	86
230	RAFT Polymerization Kinetics: Combination of Apparently Conflicting Models. Macromolecules, 2008, 41, 6400-6412.	4.8	116
231	"Click―Chemistry and Radical Polymerization: Potential Loss of Orthogonality. Macromolecules, 2008, 41, 6728-6732.	4.8	94
232	Solid-Supported MADIX Polymerization of Vinyl Acetate. Macromolecules, 2008, 41, 7071-7078.	4.8	36
233	Synthesis of Poly(methyl acrylate) Grafted onto Silica Particles by Z-supported RAFT Polymerization. Macromolecular Symposia, 2007, 248, 94-103.	0.7	29
234	Synthesis of well-defined conjugated copolymers by RAFT polymerization using cysteine and glutathione-based chain transfer agents. Chemical Communications, 2007, , 4294.	4.1	41

#	Article	IF	Citations
235	Tuning the color switching of naphthopyrans via the control of polymeric architectures. Journal of Materials Chemistry, 2007, 17, 1885-1893.	6.7	69
236	Ultra-fast microwave enhanced reversible addition-fragmentation chain transfer (RAFT) polymerization: monomers to polymers in minutes. Chemical Communications, 2007, , 2145.	4.1	63
237	Reversible Additionâ°'Fragmentation Chain Transfer Graft Polymerization Mediated by Fumed Silica Supported Chain Transfer Agents. Macromolecules, 2007, 40, 9116-9124.	4.8	118
238	Investigation of the Experimental Factors Affecting the Trithiocarbonate-Mediated RAFT Polymerization of Methyl Acrylate. Australian Journal of Chemistry, 2007, 60, 772.	0.9	25
239	Novel Difunctional Reversible Addition Fragmentation Chain Transfer (RAFT) Agent for the Synthesis of Telechelic and ABA Triblock Methacrylate and Acrylate Copolymers. Macromolecules, 2007, 40, 2318-2326.	4.8	32
240	Living Radical Polymerization of Isoprene via the RAFT Process. Macromolecules, 2007, 40, 1408-1412.	4.8	105
241	Microwave-Accelerated RAFT Polymerization of Polar Monomers. Macromolecular Rapid Communications, 2007, 28, 478-483.	3.9	58
242	Surface structure of thin asymmetric PS-b-PMMA diblock copolymers investigated by atomic force microscopy. European Polymer Journal, 2007, 43, 789-796.	5.4	9
243	Original approach to multiblock copolymers via reversible addition–fragmentation chain transfer polymerization. Journal of Polymer Science Part A, 2007, 45, 2334-2340.	2.3	79
244	Sacrificial synthesis. Nature, 2007, 445, 271-272.	27.8	21
244	Sacrificial synthesis. Nature, 2007, 445, 271-272. RAFT Graft Polymerization of 2-(Dimethylaminoethyl) Methacrylate onto Cellulose Fibre. Australian Journal of Chemistry, 2006, 59, 737.	27.8	21
	RAFT Graft Polymerization of 2-(Dimethylaminoethyl) Methacrylate onto Cellulose Fibre. Australian		
245	RAFT Graft Polymerization of 2-(Dimethylaminoethyl) Methacrylate onto Cellulose Fibre. Australian Journal of Chemistry, 2006, 59, 737. Synthesis of Well-Defined Homopolymer and Diblock Copolymer Grafted onto Silica Particles by	0.9	28
245 246	RAFT Graft Polymerization of 2-(Dimethylaminoethyl) Methacrylate onto Cellulose Fibre. Australian Journal of Chemistry, 2006, 59, 737. Synthesis of Well-Defined Homopolymer and Diblock Copolymer Grafted onto Silica Particles by Z-Supported RAFT Polymerization. Macromolecules, 2006, 39, 8603-8608. Progress in RAFT/MADIX Polymerization: Synthesis, Use, and Recovery of Chain Transfer Agents. ACS	0.9	139
245 246 247	RAFT Graft Polymerization of 2-(Dimethylaminoethyl) Methacrylate onto Cellulose Fibre. Australian Journal of Chemistry, 2006, 59, 737. Synthesis of Well-Defined Homopolymer and Diblock Copolymer Grafted onto Silica Particles by Z-Supported RAFT Polymerization. Macromolecules, 2006, 39, 8603-8608. Progress in RAFT/MADIX Polymerization: Synthesis, Use, and Recovery of Chain Transfer Agents. ACS Symposium Series, 2006, , 438-454. Synthesis of Monocyclic and Linear Polystyrene Using the Reversible Coupling/Cleavage of	0.9 4.8 0.5	28 139 5
245 246 247 248	RAFT Graft Polymerization of 2-(Dimethylaminoethyl) Methacrylate onto Cellulose Fibre. Australian Journal of Chemistry, 2006, 59, 737. Synthesis of Well-Defined Homopolymer and Diblock Copolymer Grafted onto Silica Particles by Z-Supported RAFT Polymerization. Macromolecules, 2006, 39, 8603-8608. Progress in RAFT/MADIX Polymerization: Synthesis, Use, and Recovery of Chain Transfer Agents. ACS Symposium Series, 2006, 438-454. Synthesis of Monocyclic and Linear Polystyrene Using the Reversible Coupling/Cleavage of Thiol/Disulfide Groups. Macromolecules, 2006, 39, 9028-9034. Thermal stability of reversible addition-fragmentation chain transfer/macromolecular architecture design by interchange of xanthates chain-transfer agents. Journal of Polymer Science Part A, 2006, 44,	0.9 4.8 0.5	28 139 5 152
245 246 247 248	RAFT Graft Polymerization of 2-(Dimethylaminoethyl) Methacrylate onto Cellulose Fibre. Australian Journal of Chemistry, 2006, 59, 737. Synthesis of Well-Defined Homopolymer and Diblock Copolymer Grafted onto Silica Particles by Z-Supported RAFT Polymerization. Macromolecules, 2006, 39, 8603-8608. Progress in RAFT/MADIX Polymerization: Synthesis, Use, and Recovery of Chain Transfer Agents. ACS Symposium Series, 2006, , 438-454. Synthesis of Monocyclic and Linear Polystyrene Using the Reversible Coupling/Cleavage of Thiol/Disulfide Groups. Macromolecules, 2006, 39, 9028-9034. Thermal stability of reversible addition-fragmentation chain transfer/macromolecular architecture design by interchange of xanthates chain-transfer agents. Journal of Polymer Science Part A, 2006, 44, 6980-6987. Selective One-Pot Synthesis of Trithiocarbonates, Xanthates, and Dithiocarbamates for Use in	0.9 4.8 0.5 4.8	28 139 5 152 63

#	Article	IF	Citations
253	Thermoresponsive micelles from well-defined block copolymers synthesized via reversible addition-fragmentation chain transfer polymerization. Journal of Polymer Science Part A, 2005, 43, 3643-3654.	2.3	81
254	Macromolecular design via reversible addition-fragmentation chain transfer (RAFT)/xanthates (MADIX) polymerization. Journal of Polymer Science Part A, 2005, 43, 5347-5393.	2.3	1,095
255	Reversible Additionâ^Fragmentation Chain Transfer Polymerization Mediated by a Solid Supported Chain Transfer Agent. Macromolecules, 2005, 38, 6770-6774.	4.8	105
256	Novel Amide-Based Chain Transfer Agent for Reversible Addition Fragmentation Chain Transfer Polymerization. Macromolecules, 2005, 38, 1057-1060.	4.8	34
257	One-Pot Hyperbranched Polymer Synthesis Mediated by Reversible Addition Fragmentation Chain Transfer (RAFT) Polymerization. Macromolecules, 2005, 38, 2131-2136.	4.8	273
258	Merrifield Resin-Supported Chain Transfer Agents, Precursors for RAFT Polymerization. Organic Letters, 2005, 7, 3449-3452.	4.6	41
259	Graft Polymerization:  Grafting Poly(styrene) from Cellulose via Reversible Additionâ°Fragmentation Chain Transfer (RAFT) Polymerization. Macromolecules, 2005, 38, 10363-10372.	4.8	255
260	Reversible Additionâ^'Fragmentation Chain Transfer Polymerization:  End Group Modification for Functionalized Polymers and Chain Transfer Agent Recovery. Macromolecules, 2005, 38, 2033-2036.	4.8	466
261	Initiating efficiency of poly(ethylene glycol)-based initiators for transition metal mediated living radical polymerisation. European Polymer Journal, 2004, 40, 2277-2286.	5.4	12
262	Nitridation effect on the oxidation of a austenitic stainless steel AISI 304 at $900 \hat{A}^{\circ}$ C. Applied Surface Science, 2004, 225, 14-20.	6.1	11
263	Polymer Architecturesvia Reversible Addition Fragmentation Chain Transfer(RAFT) Polymerization. Macromolecular Symposia, 2004, 216, 23-36.	0.7	48
264	Versatile Chain Transfer Agents for Reversible Addition Fragmentation Chain Transfer (RAFT) Polymerization to Synthesize Functional Polymeric Architectures. Macromolecules, 2004, 37, 2709-2717.	4.8	196
265	Poly(ethylene glycol) as solvent for transition metal mediated living radical polymerisationElectronic supplementary information (ESI) available: experimental data. See http://www.rsc.org/suppdata/cc/b3/b313061d/. Chemical Communications, 2004, , 604.	4.1	39
266	Influence of nitridation on the oxidation of a 304 steel at 800 ${\hat {\sf A}}^{\circ}{\sf C}.$ Corrosion Science, 2004, 46, 2191-2201.	6.6	26
267	Reversible addition–fragmentation chain transfer polymerization of methacrylate, acrylate and styrene monomers in 1-alkyl-3-methylimidazolium hexfluorophosphate. European Polymer Journal, 2003, 39, 417-422.	5.4	68
268	Preparation of Fluorinated Copolymers by Copper-Mediated Living Radical Polymerization. Macromolecules, 2003, 36, 9042-9049.	4.8	52
269	Effect of water on copper mediated living radical polymerization. Macromolecular Symposia, 2002, 182, 261-272.	0.7	45
270	Living Radical Polymerization of Styrene Mediated by Copper(I)/N-n-Alkyl-2-pyridylmethanimine Catalysts. Macromolecules, 2002, 35, 2941-2948.	4.8	19

#	Article	IF	CITATIONS
271	Origin of Inhibition Effects in the Reversible Addition Fragmentation Chain Transfer (RAFT) Polymerization of Methyl Acrylate. Macromolecules, 2002, 35, 8300-8306.	4.8	332
272	First report of reversible addition–fragmentation chain transfer (RAFT) polymerisation in room temperature ionic liquids. Chemical Communications, 2002, , 2226-2227.	4.1	126
273	Snowpack processing of acetaldehyde and acetone in the Arctic atmospheric boundary layer. Atmospheric Environment, 2002, 36, 2743-2752.	4.1	90
274	Acetaldehyde and acetone in the Arctic snowpack during the ALERT2000 campaign. Snowpack composition, incorporation processes and atmospheric impact. Atmospheric Environment, 2002, 36, 2609-2618.	4.1	60
275	Formaldehyde in Arctic snow. Incorporation into ice particles and evolution in the snowpack. Atmospheric Environment, 2002, 36, 2695-2705.	4.1	54
276	Preparation of fluorinated methacrylic copolymers by copper mediated living radical polymerization. Tetrahedron, 2002, 58, 4053-4059.	1.9	49
277	Copper(I)-mediated radical polymerization of methacrylates in aqueous solution. Journal of Polymer Science Part A, 2001, 39, 1696-1707.	2.3	91
278	A new fluorescent probe for sensitive detection of carbonyl compounds: sensitivity improvement and application to environmental water samples. Analytica Chimica Acta, 2000, 412, 221-233.	5. 4	56
279	Novel polymers from atom transfer polymerisation mediated by copper(I) Schiff base complexes. Macromolecular Symposia, 2000, 157, 201-208.	0.7	14
280	Copper(I)-Mediated Living Radical Polymerization in the Presence of Oxyethylene Groups:Â Online1H NMR Spectroscopy To Investigate Solvent Effects. Macromolecules, 2000, 33, 8246-8251.	4.8	109
281	Polymers with Well-Defined End Groups via RAFT– Synthesis, Applications andPostmodifications. , 0, , 455-482.		23
282	Effect of Phosphoric Acid Treatment on Isothermal High Temperature Oxidation Behaviour of AISI 304 Stainless Steel at 800°C. Defect and Diffusion Forum, 0, 323-325, 359-364.	0.4	0
283	Synthesis of Poly(methyl acrylate) Grafted onto Silica Particles by Z-supported RAFT Polymerization. , 0, , 94-103.		1
284	Peptide–Polymer Conjugates: Synthetic Design Strategies. , 0, , 5892-5906.		0
285	Stochasticity of poly(2-oxazoline) oligomer hydrolysis determined by tandem mass spectrometry. Polymer Chemistry, 0, , .	3.9	0