Marvin Wickens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2678836/publications.pdf

Version: 2024-02-01

61857 54797 7,594 91 43 84 citations h-index g-index papers 100 100 100 4761 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A PUF family portrait: 3′UTR regulation as a way of life. Trends in Genetics, 2002, 18, 150-157.	2.9	565
2	CONTROL OF TRANSLATION INITIATION IN ANIMALS. Annual Review of Cell and Developmental Biology, 1998, 14, 399-458.	4.0	478
3	A conserved RNA-binding protein controls germline stem cells in Caenorhabditis elegans. Nature, 2002, 417, 660-663.	13.7	393
4	Multifunctional deadenylase complexes diversify mRNA control. Nature Reviews Molecular Cell Biology, 2008, 9, 337-344.	16.1	359
5	Life and death in the cytoplasm: messages from the 3′ end. Current Opinion in Genetics and Development, 1997, 7, 220-232.	1.5	329
6	PUF proteins bind Pop2p to regulate messenger RNAs. Nature Structural and Molecular Biology, 2006, 13, 533-539.	3.6	278
7	A regulatory cytoplasmic poly(A) polymerase in Caenorhabditis elegans. Nature, 2002, 419, 312-316.	13.7	272
8	NANOS-3 and FBF proteins physically interact to control the sperm–oocyte switch in Caenorhabditis elegans. Current Biology, 1999, 9, 1009-1018.	1.8	247
9	Polyadenylation of c-mos mRNA as a control point in Xenopus meiotic maturation. Nature, 1995, 374, 511-516.	13.7	233
10	FBF-1 and FBF-2 Regulate the Size of the Mitotic Region in the C. elegans Germline. Developmental Cell, 2004, 7, 697-707.	3.1	167
11	PUF Protein-mediated Deadenylation Is Catalyzed by Ccr4p. Journal of Biological Chemistry, 2007, 282, 109-114.	1.6	141
12	CPEB proteins control two key steps in spermatogenesis in C. elegans. Genes and Development, 2000, 14, 2596-2609.	2.7	139
13	GLD-3, a Bicaudal-C Homolog that Inhibits FBF to Control Germline Sex Determination in C. elegans. Developmental Cell, 2002, 3, 697-710.	3.1	133
14	Mammalian GLD-2 homologs are poly(A) polymerases. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 4407-4412.	3.3	128
15	Analyzing mRNA–protein complexes using a yeast three-hybrid system. Methods, 2002, 26, 123-141.	1.9	125
16	A family of poly(U) polymerases. Rna, 2007, 13, 860-867.	1.6	124
17	RNA-protein interactions in the yeast three-hybrid system: Affinity, sensitivity, and enhanced library screening. Rna, 2005, 11, 227-233.	1.6	121
18	FBF and Its Dual Control of <i>gld-1</i> Expression in the <i>Caenorhabditis elegans</i> Germline. Genetics, 2009, 181, 1249-1260.	1.2	119

#	Article	IF	Citations
19	Binding specificity and mRNA targets of a C. elegans PUF protein, FBF-1. Rna, 2005, 11, 447-458.	1.6	116
20	Conserved Regulation of MAP Kinase Expression by PUF RNA-Binding Proteins. PLoS Genetics, 2007, 3, e233.	1.5	114
21	Translational Repression by Deadenylases. Journal of Biological Chemistry, 2010, 285, 28506-28513.	1.6	114
22	PAP- and GLD-2-type poly(A) polymerases are required sequentially in cytoplasmic polyadenylation and oogenesis in <i>Drosophila</i> i>Development (Cambridge), 2008, 135, 1969-1979.	1.2	113
23	Structural basis for specific recognition of multiple mRNA targets by a PUF regulatory protein. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20186-20191.	3.3	109
24	Cooperativity in RNA-Protein Interactions: Global Analysis of RNA Binding Specificity. Cell Reports, 2012, 1, 570-581.	2.9	106
25	A single spacer nucleotide determines the specificities of two mRNA regulatory proteins. Nature Structural and Molecular Biology, 2005, 12, 945-951.	3.6	97
26	Vertebrate GLD2 poly(A) polymerases in the germline and the brain. Rna, 2005, 11, 1117-1130.	1.6	91
27	poly(UG)-tailed RNAs in genome protection and epigenetic inheritance. Nature, 2020, 582, 283-288.	13.7	88
28	Purification of RNA and RNA-protein complexes by an R17 coat protein affinity method. Nucleic Acids Research, 1990, 18, 6587-6594.	6.5	84
29	A $5\hat{a}\in^2$ cytosine binding pocket in Puf3p specifies regulation of mitochondrial mRNAs. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20192-20197.	3.3	83
30	Deviants — or emissaries. Nature, 1994, 367, 17-18.	13.7	81
31	Multi-omics Reveal Specific Targets of the RNA-Binding Protein Puf3p and Its Orchestration of Mitochondrial Biogenesis. Cell Systems, 2018, 6, 125-135.e6.	2.9	80
32	Two Yeast PUF Proteins Negatively Regulate a Single mRNA. Journal of Biological Chemistry, 2007, 282, 15430-15438.	1.6	79
33	Protein-RNA networks revealed through covalent RNA marks. Nature Methods, 2015, 12, 1163-1170.	9.0	79
34	Dose-dependent control of proliferation and sperm specification by FOG-1/CPEB. Development (Cambridge), 2005, 132, 3471-3481.	1.2	78
35	Targeted translational regulation using the PUF protein family scaffold. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15870-15875.	3.3	74
36	A protein-RNA specificity code enables targeted activation of an endogenous human transcript. Nature Structural and Molecular Biology, 2014, 21, 732-738.	3.6	74

#	Article	IF	Citations
37	GLD2 poly(A) polymerase is required for long-term memory. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14644-14649.	3.3	70
38	LIP-1 phosphatase controls the extent of germline proliferation in Caenorhabditis elegans. EMBO Journal, 2006, 25, 88-96.	3.5	68
39	SYGL-1 and LST-1 link niche signaling to PUF RNA repression for stem cell maintenance in Caenorhabditis elegans. PLoS Genetics, 2017, 13, e1007121.	1.5	64
40	Identification of RNAs that bind to a specific protein using the yeast three-hybrid system. Rna, 1999, 5, 596-601.	1.6	63
41	Analysis of yeast prp20 mutations and functional complementation by the human homologue RCC1, a protein involved in the control of chromosome condensation. Molecular Genetics and Genomics, 1991, 227, 417-423.	2.4	60
42	RNA regulatory networks diversified through curvature of the PUF protein scaffold. Nature Communications, 2015, 6, 8213.	5.8	56
43	The PUF binding landscape in metazoan germ cells. Rna, 2016, 22, 1026-1043.	1.6	53
44	Unbiased screen of RNA tailing activities reveals a poly(UG) polymerase. Nature Methods, 2019, 16, 437-445.	9.0	52
45	Poly(A) Polymerase and the Regulation of Cytoplasmic Polyadenylation. Journal of Biological Chemistry, 2001, 276, 41810-41816.	1.6	49
46	A Caenorhabditis elegans PUF protein family with distinct RNA binding specificity. Rna, 2008, 14, 1550-1557.	1.6	47
47	RNA Targets and Specificity of Staufen, a Double-stranded RNA-binding Protein in Caenorhabditis elegans. Journal of Biological Chemistry, 2013, 288, 2532-2545.	1.6	45
48	Stacking interactions in PUF–RNA complexes. Rna, 2011, 17, 718-727.	1.6	43
49	Patterns and plasticity in RNA-protein interactions enable recruitment of multiple proteins through a single site. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6054-6059.	3.3	43
50	A single <i>C. elegans</i> PUF protein binds RNA in multiple modes. Rna, 2009, 15, 1090-1099.	1.6	42
51	MOLECULAR BIOLOGY: A Place to Die, a Place to Sleep. Science, 2003, 300, 753-755.	6.0	41
52	Identification of a Conserved Interface between PUF and CPEB Proteins. Journal of Biological Chemistry, 2012, 287, 18854-18862.	1.6	40
53	Probing RNA–protein networks: biochemistry meets genomics. Trends in Biochemical Sciences, 2015, 40, 157-164.	3.7	39
54	Tethered function assays using 3′ untranslated regions. Methods, 2002, 26, 142-150.	1.9	38

#	Article	IF	Citations
55	Translational repression by PUF proteins in vitro. Rna, 2010, 16, 1217-1225.	1.6	38
56	Divergence of Pumilio/fem-3 mRNA Binding Factor (PUF) Protein Specificity through Variations in an RNA-binding Pocket. Journal of Biological Chemistry, 2012, 287, 6949-6957.	1.6	37
57	Target selection by natural and redesigned PUF proteins. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15868-15873.	3.3	33
58	Recurrent rewiring and emergence of RNA regulatory networks. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2816-E2825.	3.3	32
59	Architecture and dynamics of overlapped RNA regulatory networks. Rna, 2017, 23, 1636-1647.	1.6	32
60	Springtime in the desert. Nature, 1993, 363, 305-306.	13.7	30
61	Autoregulation of GLD-2 cytoplasmic poly(A) polymerase. Rna, 2006, 13, 188-199.	1.6	30
62	<i>Xenopus</i> CAF1 requires NOT1-mediated interaction with 4E-T to repress translation in vivo. Rna, 2015, 21, 1335-1345.	1.6	28
63	A PUF Hub Drives Self-Renewal in <i>Caenorhabditis elegans</i> Germline Stem Cells. Genetics, 2020, 214, 147-161.	1.2	26
64	C. elegans germ granules require both assembly and localized regulators for mRNA repression. Nature Communications, 2021, 12, 996.	5.8	26
65	A three-hybrid screen identifies mRNAs controlled by a regulatory protein. Rna, 2006, 12, 1594-1600.	1.6	25
66	Divergent RNA binding specificity of yeast Puf2p. Rna, 2011, 17, 1479-1488.	1.6	25
67	Context-dependent function of a conserved translational regulatory module. Development (Cambridge), 2012, 139, 1509-1521.	1.2	24
68	The molecular basis of LST-1 self-renewal activity and its control of stem cell pool size. Development (Cambridge), 2019, 146, .	1.2	24
69	Analysis of RNA–Protein Interactions Using a Yeast Three-Hybrid System. Methods in Enzymology, 2008, 449, 295-315.	0.4	22
70	A Tail Tale for U. Science, 2008, 319, 1344-1345.	6.0	22
71	The Nucleic Acid-binding Domain and Translational Repression Activity of a Xenopus Terminal Uridylyl Transferase. Journal of Biological Chemistry, 2013, 288, 20723-20733.	1.6	21
72	PGL germ granule assembly protein is a base-specific, single-stranded RNase. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1279-1284.	3.3	21

#	Article	IF	Citations
73	A Role for the Poly(A)-binding Protein Pab1p in PUF Protein-mediated Repression. Journal of Biological Chemistry, 2011, 286, 33268-33278.	1.6	19
74	Chapter 5 Regulated Deadenylation In Vitro. Methods in Enzymology, 2008, 448, 77-106.	0.4	18
75	Biochemical Characterization of the Caenorhabditis elegans FBFâCPB-1 Translational Regulation Complex Identifies Conserved Protein Interaction Hotspots. Journal of Molecular Biology, 2013, 425, 725-737.	2.0	18
76	MOLECULAR BIOLOGY: Knives, Accomplices, and RNA. Science, 2004, 306, 1299-1300.	6.0	16
77	A Proteinâ«Protein Interaction Platform Involved in Recruitment of GLD-3 to the FBFâ«fem-3 mRNA Complex. Journal of Molecular Biology, 2013, 425, 738-754.	2.0	16
78	Toward Identifying Subnetworks from FBF Binding Landscapes in <i>Caenorhabditis</i> Spermatogenic or Oogenic Germlines. G3: Genes, Genomes, Genetics, 2019, 9, 153-165.	0.8	16
79	Records of RNA locations in living yeast revealed through covalent marks. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23539-23547.	3.3	15
80	An RNA-Binding Multimer Specifies Nematode Sperm Fate. Cell Reports, 2018, 23, 3769-3775.	2.9	14
81	Distinct RNA-binding modules in a single PUF protein cooperate to determine RNA specificity. Nucleic Acids Research, 2019, 47, 8770-8784.	6.5	9
82	Expanding the binding specificity for RNA recognition by a PUF domain. Nature Communications, 2021, 12, 5107.	5.8	8
83	Determining the RNA Specificity and Targets of RNA-Binding Proteins using a Three-Hybrid System. Methods in Enzymology, 2014, 539, 163-181.	0.4	7
84	Identifying Proteins that Bind a Known RNA Sequence Using the Yeast Three-Hybrid System. Methods in Enzymology, 2014, 539, 195-214.	0.4	3
85	RNA Tagging: Preparation of High-Throughput Sequencing Libraries. Methods in Molecular Biology, 2018, 1649, 455-471.	0.4	3
86	Dissecting a Known RNA–Protein Interaction using a Yeast Three-Hybrid System. Methods in Enzymology, 2014, 539, 183-193.	0.4	2
87	TRAID-seq: Unbiased analysis of RNA tailing enzyme activity at single-nucleotide resolution. Protocol Exchange, 0, , .	0.3	1
88	Lessons from the RNA World: humility and hubris. Rna, 2015, 21, 482-482.	1.6	0
89	Reply to Hogan: Direct evidence of RNA–protein interactions and rewiring. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10854-E10855.	3.3	0
90	mRNA control: PUF repressors and GLD2 activators. FASEB Journal, 2008, 22, .	0.2	0

#	Article	IF	CITATIONS
91	Probing RNA sequence specificity and function of PUF proteins. FASEB Journal, 2009, 23, .	0.2	O