Jing-Tai Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2678660/publications.pdf

Version: 2024-02-01

		201674	233421
88	2,401	27	45
papers	citations	h-index	g-index
88	88	88	2351
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Mg-Li Hybrid Batteries: The Combination of Fast Kinetics and Reduced Overpotential. Energy Material Advances, 2022, 2022, .	11.0	10
2	Multiple Color Emission of Mechanoluminescence and Photoluminescence from SrZnSO: Bi ³⁺ for Multimode Anticounterfeiting. Inorganic Chemistry, 2022, 61, 4302-4311.	4.0	18
3	Particle-size controlled porous nano-flowers constructing 3D hierarchical mesoporous manganese dioxide: Template-free formation and capacitive performance. Journal of Energy Storage, 2021, 33, 102035.	8.1	3
4	Nanowires self-assemble into \hat{l}^2 -MnO2 nanospheres to form crosslinking 3D hierarchical porous networks: with template-free fabrication and good supercapacitive performance over a broad temperature range. Sustainable Energy and Fuels, 2021, 5, 4944-4954.	4.9	1
5	Regulating the trap distribution to achieve high-contrast mechanoluminescence with an extended saturation threshold through co-doping Nd ³⁺ into CaZnOS:Bi ³⁺ ,Li ⁺ . Journal of Materials Chemistry C, 2021, 9, 7689-7696.	5 . 5	18
6	Stabilized cubic phase BiAgSe _{2â^'x} S _x with excellent thermoelectric properties <i>via</i> phase boundary engineering. Journal of Materials Chemistry C, 2021, 9, 6766-6772.	5 . 5	4
7	Self-assembly of a g-C ₃ N ₄ -based 3D aerogel induced by N-modified carbon dots for enhanced photocatalytic hydrogen production. Journal of Materials Chemistry A, 2021, 9, 22373-22379.	10.3	25
8	Enhanced mechanically induced red-light emitting novel mechanoluminescence materials for ultrasonic visualization and monitoring applications. Journal of Materials Chemistry C, 2021, 9, 5868-5875.	5 . 5	25
9	Minimizing Thermal Conductivity for Boosting Thermoelectric Properties of Cu–Ni-Based Alloys through All-Scale Hierarchical Architectures. ACS Applied Energy Materials, 2021, 4, 5015-5023.	5.1	9
10	Optimization of electrical and thermal transport properties of layered Bi2O2Se via Nb doping. Journal of Materials Science, 2021, 56, 12732-12739.	3.7	3
11	Efficient energy transfer from Bi ³⁺ to Mn ²⁺ in CaZnOS for WLED application. Dalton Transactions, 2021, 50, 11130-11136.	3.3	14
12	The influence of Sc substitution on the crystal structure and scintillation properties of LuBO ₃ :Ce ³⁺ based on a combinatorial materials chip and high-throughput XRD. Journal of Materials Chemistry C, 2021, 9, 8666-8673.	5 . 5	3
13	The Electrical and Thermal Transport Properties of La-Doped SrTiO3 with Sc2O3 Composite. Materials, 2021, 14, 6279.	2.9	1
14	Ultrahigh Spatial Resolution, Fast Decay, and Stable Xâ€Ray Scintillation Screen through Assembling CsPbBr ₃ Nanocrystals Arrays in Anodized Aluminum Oxide. Advanced Optical Materials, 2021, 9, 2101297.	7.3	29
15	Metal-Ion-Cross-Linked Nitrogen-Doped Carbon Dot Hydrogels for Dual-Spectral Detection and Extractable Removal of Divalent Heavy Metal Ions. ACS Applied Nano Materials, 2021, 4, 13986-13994.	5.0	13
16	The equivalent and aliovalent dopants boosting the thermoelectric properties of YbMg2Sb2. Science China Materials, 2020, 63, 437-443.	6.3	16
17	Effective Mass Enhancement and Thermal Conductivity Reduction for Improving the Thermoelectric Properties of Pseudoâ€Binary Ge ₂ Sb ₂ Te ₅ . Annalen Der Physik, 2020, 532, 1900390.	2.4	8
18	Improved Phase Stability and Enhanced Luminescence of Calcite Phase LuBO ₃ :Ce ³⁺ through Ga ³⁺ Incorporation. Inorganic Chemistry, 2020, 59, 14513-14525.	4.0	9

#	Article	IF	CITATIONS
19	High-throughput screening platform for solid electrolytes combining hierarchical ion-transport prediction algorithms. Scientific Data, 2020, 7, 151.	5. 3	90
20	CAVD, towards better characterization of void space for ionic transport analysis. Scientific Data, 2020, 7, 153.	5. 3	43
21	Suppressing the dynamic precipitation and lowering the thermal conductivity for stable and high thermoelectric performance in BaCu2Te2 based materials. Journal of Materials Chemistry A, 2020, 8, 5323-5331.	10.3	16
22	Color manipulation of Bi ³⁺ -activated CaZnOS under stress with ultra-high efficiency and low threshold for anticounterfeiting applications. Journal of Materials Chemistry C, 2020, 8, 3308-3315.	5 . 5	35
23	One Stone, Two Birds: pH- and Temperature-Sensitive Nitrogen-Doped Carbon Dots for Multiple Anticounterfeiting and Multiple Cell Imaging. ACS Applied Materials & Diterfaces, 2020, 12, 20849-20858.	8.0	44
24	Analysis on the electronic trap of \hat{l}^2 -Ga2O3 single crystal. Journal of Materials Science, 2019, 54, 12643-12649.	3.7	26
25	Intense red photoluminescence and mechanoluminescence from Mn ²⁺ -activated SrZnSO with a layered structure. Journal of Materials Chemistry C, 2019, 7, 8070-8078.	5.5	33
26	Greatly Enhanced Faradic Capacities of 3D Porous Mn ₃ O ₄ /G Composites as Lithium-Ion Anodes and Supercapacitors by C–O–Mn Bonding. ACS Applied Materials & Diterfaces, 2019, 11, 10178-10188.	8.0	56
27	Intentional Carrier Doping to Realize n-Type Conduction in Zintl Phases Eu5â^'yLayIn2.2Sb6. Materials, 2019, 12, 264.	2.9	3
28	Rapid, convenient and low-energy preparation of spherical rare earth doped YAG phosphors by a laser sintering method. Journal of Materials Chemistry C, 2019, 7, 13070-13079.	5.5	19
29	Realizing High Thermoelectric Performance in BaCu _{2–<i>x</i>} Ag _{<i>x</i>} Te ₂ through Enhanced Carrier Effective Mass and Point-Defect Scattering. ACS Applied Energy Materials, 2019, 2, 889-895.	5.1	26
30	The luminescence properties of CaZnOS: Bi3+, Sm3+, Li+ phosphors with tunable emissions and energy transfer for white emission. Journal of Luminescence, 2019, 206, 578-584.	3.1	25
31	The effect of site occupation and valence state of Bi on the luminescence properties of Bi-activated oxysulfide MZnOS (M = Ca, Ba) with layer structure. Journal of Alloys and Compounds, 2018, 742, 1037-1045.	5 . 5	20
32	Two-dimensional mesoporous ZnCo2O4 nanosheets as a novel electrocatalyst for detection of o-nitrophenol and p-nitrophenol. Biosensors and Bioelectronics, 2018, 112, 177-185.	10.1	102
33	Ordered mesoporous Co3O4 nanospheres / reduced graphene oxide composites for rutin detection. Ceramics International, 2018, 44, 7858-7866.	4.8	23
34	Sodium Substitution in Lead Telluride. Chemistry of Materials, 2018, 30, 1362-1372.	6.7	27
35	Template-free and room-temperature synthesis of 3D sponge-like mesoporous Mn3O4 with high capacitive performance. Energy Storage Materials, 2018, 11, 176-183.	18.0	31
36	Synthesis and characterization of rhombic dodecahedral YAG microcrystals with good dispersity, high crystallinity and controllable crystal size. CrystEngComm, 2018, 20, 7773-7781.	2.6	4

#	Article	lF	CITATIONS
37	Synthesis and characterization of monodisperse yttrium aluminum garnet (YAG) micro-crystals with rhombic dodecahedron. Journal of Alloys and Compounds, 2018, 762, 537-547.	5.5	6
38	Facile synthesis of hierarchical mesoporous beta-manganese dioxide nanoflowers with extremely high specific surface areas for high-performance electrochemical capacitors. Electrochimica Acta, 2018, 284, 52-59.	5 . 2	12
39	Thermoelectric stability of Eu- and Na-substituted PbTe. Journal of Materials Chemistry C, 2018, 6, 9482-9493.	5.5	18
40	Weak Interactions under Pressure: <i>hp</i> >â€CuBi and Its Analogues. Angewandte Chemie - International Edition, 2017, 56, 5620-5624.	13.8	22
41	Spectrum regulation of YAG:Ce transparent ceramics with Pr, Cr doping for white light emitting diodes application. Journal of the European Ceramic Society, 2017, 37, 3403-3409.	5.7	103
42	Monodisperse Na _{<i>x</i>} Y(OH) _{<i>y</i>} F _{3+<i>x</i>} Besocrystals with Tunable Morphology and Chemical Composition: pH-Mediated Ion-Exchange. Crystal Growth and Design, 2017, 17, 711-718.	3.0	9
43	Electronic compensation-induced stabilization of carbon dots@PMMA under UV aging. New Journal of Chemistry, 2017, 41, 13222-13225.	2.8	2
44	Ca-α-SiAlON:Eu Phosphors: Oxidation States, Energy Transfer, and Emission Enhancement by Incorporation-Aimed Surface Engineering. ACS Applied Materials & Interfaces, 2017, 9, 30982-30991.	8.0	4
45	Cd substitution in Zintl phase Eu5In2Sb6 enhancing the thermoelectric performance. Journal of Alloys and Compounds, 2017, 726, 618-622.	5.5	7
46	Ordered Mesoporous NiCo ₂ O ₄ Nanospheres as a Novel Electrocatalyst Platform for 1-Naphthol and 2-Naphthol Individual Sensing Application. ACS Applied Materials & Interfaces, 2017, 9, 29771-29781.	8.0	39
47	Preparation and Optical Properties of Infrared Transparent 3Y-TZP Ceramics. Materials, 2017, 10, 390.	2.9	11
48	Enhanced thermoelectric properties of BaZn ₂ Sb ₂ via a synergistic optimization strategy using co-doped Na and Sr. Journal of Materials Chemistry A, 2016, 4, 12119-12125.	10.3	19
49	Solid solution Pb _{1â^'x} Eu _x Te: constitution and thermoelectric behavior. Inorganic Chemistry Frontiers, 2016, 3, 1152-1159.	6.0	17
50	Three dimensional plasmonic assemblies of AuNPs with an overall size of sub-200 nm for chemo-photothermal synergistic therapy of breast cancer. Nanoscale, 2016, 8, 18682-18692.	5.6	38
51	A Novel Small-Molecule Compound of Lithium Iodine and 3-Hydroxypropionitride as a Solid-State Electrolyte for Lithium–Air Batteries. Inorganic Chemistry, 2016, 55, 6504-6510.	4.0	15
52	Effect of manganese doping on the thermoelectric properties of Zintl phase EuCd2Sb2. Journal of Rare Earths, 2015, 33, 1093-1097.	4.8	14
53	Zintlâ€Phase Sr ₃ LiAs ₂ H: Crystal Structure and Chemical Bonding Analysis by the Electron Localizability Approach. Chemistry - A European Journal, 2015, 21, 14471-14477.	3.3	9
54	A Novel Facile Room Temperature Chemical Lithiation for Reduction of Eu ³⁺ in NASICON Crystal Structure. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 1527-1532.	1.2	2

#	Article	IF	CITATIONS
55	Luminescence properties of Eu3+-doped new scheelite-type compounds. Journal of Rare Earths, 2015, 33, 1241-1245.	4.8	13
56	Thermoelectric properties of Eu- and Na-substituted SnTe. Journal of Rare Earths, 2015, 33, 1175-1181.	4.8	13
57	Energy Transfer Study on Dense Eu ³⁺ /Tb ³⁺ â€Coactivated Oxyfluoride Borogermanate Scintillating Glasses. Journal of the American Ceramic Society, 2015, 98, 781-787.	3.8	35
58	Purification, organophilicity and transparent fluorescent bulk material fabrication derived from hydrophilic carbon dots. RSC Advances, 2015, 5, 14492-14496.	3.6	4
59	Low temperature synthesis of monodispersed YAG:Eu crystallites by hydrothermal method. Journal of Alloys and Compounds, 2015, 647, 1075-1080.	5.5	25
60	Dimensional Reduction From 2D Layer to 1D Band for Germanophosphates Induced by the "Tailor Effect―of Fluoride. Inorganic Chemistry, 2015, 54, 6978-6985.	4.0	13
61	Synthesis, characterization and luminescence properties of NaY(OH) \times F 4- \times : Sm with spindle shape. Materials Research Bulletin, 2015, 68, 289-294.	5.2	2
62	Role of minor quantity of Si_3N_4 addition on the optical properties of Ce^3+-activated borogermanate scintillating glass. Optical Materials Express, 2015, 5, 1381.	3.0	7
63	Vacuum ultraviolet spectroscopic properties of rare-earth (RE3+= Sm3+, Tb3+, Dy3+)-activated zirconium-based phosphates MZr4(PO4)6 (M2+= Ca2+, Sr2+). Optical Materials, 2015, 39, 251-257.	3.6	13
64	Investigation on the luminescent properties of Eu3+-activated dense oxyfluoride borogermanate scintillating glasses. Journal of Non-Crystalline Solids, 2014, 404, 162-166.	3.1	18
65	A Simple and Highly Efficient Method for Synthesis of Ce ³⁺ â€Activated Borogermanate Scintillating Glasses in Air. Journal of the American Ceramic Society, 2014, 97, 3388-3391.	3.8	35
66	Photoluminescence properties of Pr ³⁺ , Sm ³⁺ and Tb ³⁺ doped SrAlSi ₄ N ₇ and energy level locations of rare-earth ions in SrAlSi ₄ N ₇ . Journal of Materials Chemistry C, 2014, 2, 7952-7959.	5.5	30
67	VUV spectroscopic properties of rare-earth (RE=Eu, Tb and Dy)-doped A2Zr(PO4)2 (A=Li, Na and K) phosphates. Journal of Rare Earths, 2014, 32, 946-951.	4.8	16
68	3D network mesoporous beta -manganese dioxide: Template-free synthesis and supercapacitive performance. Journal of Power Sources, 2014, 270, 411-417.	7.8	33
69	Luminescent Properties of $m Eu^{3+}-activated (70hbox{-}x){m B}_2{m O}_3hbox{-}x{m GeO}_2hbox{-}{m Gd}_2{m O}_3$ Scintillating Glasses. IEEE Transactions on Nuclear Science, 2014, 61, 380-384.$	2.0	3
70	Beta-manganese dioxide nanoflowers self-assembled by ultrathin nanoplates with enhanced supercapacitive performance. Journal of Materials Chemistry A, 2014, 2, 9353.	10.3	36
71	Zintl phase compounds AM2Sb2 (A=Ca, Sr, Ba, Eu, Yb; M=Zn, Cd) and their substitution variants: a class of potential thermoelectric materials. Journal of Rare Earths, 2013, 31, 1029-1038.	4.8	52
72	Luminescent properties of Tb3+-activated B2O3–GeO2–Gd2O3 scintillating glasses. Journal of Non-Crystalline Solids, 2013, 379, 127-130.	3.1	67

#	Article	IF	CITATIONS
73	Three-Dimensional Network Mesoporous Nanostructured α-Manganese Dioxide with High Supercapacitive Performance: Facile, Environmental and Large-Scale Synthesis. European Journal of Inorganic Chemistry, 2013, 2013, 3719-3725.	2.0	13
74	Photoluminescence properties and energy levels of RE (RE = Pr, Sm, Er, Tm) in layered-CaZnOS oxysulfide. Journal of Applied Physics, 2013, 114, .	2.5	24
75	<scp><scp>Eu</scp></scp> 3+â€Activated Borogermanate Scintillating Glass with a High <scp>Gd</scp> Content. Journal of the American Ceramic Society, 2013, 96, 1483-1489.	3.8	67
76	Enhanced Thermoelectric Figure of Merit of Zintl Phase YbCd _{2â€"<i>x</i>} Mn <i>_x</i> European Journal of Inorganic Chemistry, 2011, 2011, 4043-4048.	2.0	89
77	Transport properties of Zintl phase Yb1–xCaxCd2Sb2 at low temperature. Journal of Rare Earths, 2010, 28, 403-406.	4.8	3
78	Zintl phase Yb1 \hat{a} °xCaxCd2Sb2 with tunable thermoelectric properties induced by cation substitution. Journal of Applied Physics, 2010, 107, .	2.5	78
79	Luminescent metastable Y2WO6:Ln3+ (Ln = Eu, Er, Sm, and Dy) microspheres with controllable morphology via self-assembly. Journal of Materials Chemistry, 2010, 20, 10894.	6.7	49
80	Synthesis and properties of CaCd2Sb2 and EuCd2Sb2. Intermetallics, 2010, 18, 193-198.	3.9	65
81	Synthesis and high thermoelectric efficiency of Zintl phase YbCd2â^'xZnxSb2. Applied Physics Letters, 2009, 94, .	3.3	148
82	Vacuum ultraviolet spectroscopic properties of rare earth (RE) (RE=Eu, Tb, Dy, Sm, Tm)-doped K2GdZr(PO4)3 phosphate. Solid State Sciences, 2009, 11, 549-555.	3.2	46
83	VUV spectroscopic properties of rare-earth (RE ³⁺ = Eu, Tb,) Tj ETQq1 1 0.784314 rgBT /Overlock 10 phosphate. Journal Physics D: Applied Physics, 2008, 41, 105503.	Tf 50 347 2.8	
84	A new type of thermoelectric material, EuZn2Sb2. Journal of Chemical Physics, 2008, 129, 164713.	3.0	133
85	Luminescence properties of CaZr(PO4)2:RE (RE = Eu3+, Tb3+, Tm3+) under x-ray and VUV–UV excitation. Journal Physics D: Applied Physics, 2007, 40, 1910-1914.	2.8	45
86	Ba3BP3O12:Eu2+â€"A potential scintillation material. Applied Physics Letters, 2005, 87, 201917.	3.3	16
87	A novel scintillation screen for achieving high-energy ray detection with fast and full-color emission. Journal of Materials Chemistry C, 0 , , .	5.5	15

Significant enhancement of scintillation performance by inducing oxygen vacancies in alkali metal ion
(A⁺ = Li⁺, Na⁺, K⁺)-incorporated (Lu,) Tj ETQq0 0 0 rgBT /Overbork 10 Tfb0 137 Td