Kyung Joong Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/267826/publications.pdf

Version: 2024-02-01

759233 752698 32 405 12 20 h-index citations g-index papers 32 32 32 451 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Highly Efficient and Stable Iridium Oxygen Evolution Reaction Electrocatalysts Based on Porous Nickel Nanotube Template Enabling Tandem Devices with Solarâ€toâ€Hydrogen Conversion Efficiency Exceeding 10%. Advanced Science, 2022, 9, e2104938.	11,2	6
2	Uncertainty in the mutual calibration method for the traceable thickness measurement of ultra-thin oxide films. Metrologia, 2021, 58, 034002.	1.2	2
3	Effect of the surface contamination layer on the thickness measurement of ultra-thin HfO2 films. Applied Surface Science, 2021, 545, 148982.	6.1	4
4	Calibration of high magnification in the measurement of critical dimension by AFM and SEM. Applied Surface Science, 2021, 565, 150481.	6.1	2
5	Traceable thickness measurement of ultra-thin HfO ₂ films by medium-energy ion scattering spectroscopy. Metrologia, 2020, 57, 025001.	1.2	7
6	Analysis of elemental composition of Fe 1â€x Ni x and Si 1â€x Ge x alloy thin films by electron probe microanalysis and microâ€focus Xâ€ray fluorescence. Surface and Interface Analysis, 2020, 52, 929-932.	1.8	2
7	Improvement of power conversion efficiency by a stepwise band-gap structure for silicon quantum dot solar cells. Nanotechnology, 2020, 31, 195404.	2.6	4
8	High efficiency Si quantum dot heterojunction solar cells using a single SiOX:B layer. Nanotechnology, 2019, 30, 325404.	2.6	5
9	Efficiency improvement of Si quantum dot solar cells by activation with boron implantation. Solar Energy, 2018, 164, 89-93.	6.1	9
10	Quantitative analysis of Si1-xGex alloy films by SIMS and XPS depth profiling using a reference material. Applied Surface Science, 2018, 432, 72-77.	6.1	11
11	Roundâ€robin test for the measurement of layer thickness of multilayer films by secondary ion mass spectrometry depth profiling. Surface and Interface Analysis, 2017, 49, 1057-1063.	1.8	5
12	Band engineering of a Si quantum dot solar cell by modification of B-doping profile. Solar Energy Materials and Solar Cells, 2017, 159, 80-85.	6.2	14
13	Improved electrical properties of silicon quantum dot layers for photovoltaic applications. Solar Energy Materials and Solar Cells, 2016, 150, 71-75.	6.2	10
14	SIMS depth profiling analysis of Pâ€doped nâ€type Si layer to develop the Si QD solar cell. Surface and Interface Analysis, 2014, 46, 341-343.	1.8	0
15	SIMS study on the improvement of electrical conductivity of a Si quantum dot layer by insertion of polycrystalline Si interlayers. Surface and Interface Analysis, 2014, 46, 337-340.	1.8	О
16	Mechanism of abnormal interface artifacts in SIMS depth profiling of a Si/Ge multilayer by oxygen ions. Surface and Interface Analysis, 2014, 46, 267-271.	1.8	4
17	Determination of interface locations and layer thicknesses in SIMS and AES depth profiling of Si/Ti multilayer films by 50 at% definition. Surface and Interface Analysis, 2014, 46, 272-275.	1.8	3
18	Accurate quantification of Cu(In,Ga)Se2 films by AES depth profiling analysis. Applied Surface Science, 2013, 282, 777-781.	6.1	5

#	Article	IF	CITATIONS
19	Thickness measurement of a thin hetero-oxide film with an interfacial oxide layer by X-ray photoelectron spectroscopy. Applied Surface Science, 2012, 258, 3552-3556.	6.1	15
20	Energy dispersive electron probe microanalysis (EDâ€EPMA) of elemental composition and thickness of Feâ€Ni alloy films. Surface and Interface Analysis, 2012, 44, 1459-1461.	1.8	25
21	A method to determine the interface position and layer thickness in SIMS depth profiling of multilayer films. Metrologia, 2010, 47, 253-261.	1.2	20
22	Determination of the Absolute Thickness of Ultrathin Al ₂ O ₃ Overlayers on Si (100) Substrate. Analytical Chemistry, 2009, 81, 8519-8522.	6.5	23
23	A mutual calibration method to certify the thickness of nanometre oxide films. Metrologia, 2008, 45, 507-511.	1.2	14
24	Ultra-thin SiO2 on Si VIII. Accuracy of method, linearity and attenuation lengths for XPS. Surface and Interface Analysis, 2007, 39, 512-518.	1.8	31
25	Quantitative depth profiling of an alternating Pt/Co multilayer and a Pt–Co alloy multilayer by SIMS using a Buckminsterfullerene (C60) source. Applied Surface Science, 2007, 253, 6000-6005.	6.1	20
26	Thickness measurement of SiO2 films thinner than $1\mathrm{nm}$ by X-ray photoelectron spectroscopy. Thin Solid Films, 2006, 500, 356-359.	1.8	45
27	In-situ Control of Nitrogen Content and the Effect on PL Properties of SiNx Films Grown by Ion Beam Sputter Deposition. Materials Research Society Symposia Proceedings, 2004, 817, 86.	0.1	O
28	Formation of a highly oriented FeO thin film by phase transition of Fe3O4 and Fe nanocrystallines. Thin Solid Films, 2000, 360, 118-121.	1.8	74
29	Surface topography development on ionâ€beamâ€sputtered surfaces: Role of surface inhomogeneity induced by ionâ€beam bombardment. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1996, 14, 2744-2756.	2.1	16
30	Significant improvement in depth resolution of Cr/Ni interfaces by secondary ion mass spectrometry profiling under normal O2+ion bombardment. Applied Physics Letters, 1992, 60, 1178-1180.	3.3	25
31	Traceable quantitative analysis of AgxCu1-x alloy films by ID ICP-MS, RBS and MEIS. Metrologia, 0, , .	1.2	1
32	Review on the thickness measurement of ultrathin oxide films by mutual calibration method. Surface and Interface Analysis, 0, , .	1.8	3