
Dianne Cox

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2678062/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Macrophages Promote the Invasion of Breast Carcinoma Cells via a Colony-Stimulating Factor-1/Epidermal Growth Factor Paracrine Loop. Cancer Research, 2005, 65, 5278-5283.	0.4	660
2	Requirements for Both Rac1 and Cdc42 in Membrane Ruffling and Phagocytosis in Leukocytes. Journal of Experimental Medicine, 1997, 186, 1487-1494.	4.2	406
3	A Requirement for Phosphatidylinositol 3-Kinase in Pseudopod Extension. Journal of Biological Chemistry, 1999, 274, 1240-1247.	1.6	364
4	Myosin X is a downstream effector of PI(3)K during phagocytosis. Nature Cell Biology, 2002, 4, 469-477.	4.6	204
5	Generation of membrane structures during phagocytosis and chemotaxis of macrophages: role and regulation of the actin cytoskeleton. Immunological Reviews, 2013, 256, 222-239.	2.8	194
6	The EGF/CSF-1 Paracrine Invasion Loop Can Be Triggered by Heregulin β1 and CXCL12. Cancer Research, 2009, 69, 3221-3227.	0.4	120
7	Targeted disruption of the ABP-120 gene leads to cells with altered motility Journal of Cell Biology, 1992, 116, 943-955.	2.3	117
8	Cdc42 Regulates Fc _γ Receptor-mediated Phagocytosis through the Activation and Phosphorylation of Wiskott-Aldrich Syndrome Protein (WASP) and Neural-WASP. Molecular Biology of the Cell, 2009, 20, 4500-4508.	0.9	111
9	The Role of Rho-GTPases and actin polymerization during Macrophage Tunneling Nanotube Biogenesis. Scientific Reports, 2017, 7, 8547.	1.6	99
10	Regulation of podosome dynamics by WASp phosphorylation: implication in matrix degradation and chemotaxis in macrophages. Journal of Cell Science, 2009, 122, 3873-3882.	1.2	93
11	Exosomes and nanotubes: Control of immune cell communication. International Journal of Biochemistry and Cell Biology, 2016, 71, 44-54.	1.2	93
12	Contribution of CXCL12 secretion to invasion of breast cancer cells. Breast Cancer Research, 2012, 14, R23.	2.2	92
13	Invasive breast carcinoma cells from patients exhibit Mena ^{INV} - and macrophage-dependent transendothelial migration. Science Signaling, 2014, 7, ra112.	1.6	89
14	Synonymous modification results in high-fidelity gene expression of repetitive protein and nucleotide sequences. Genes and Development, 2015, 29, 876-886.	2.7	87
15	Blood vessel endothelium-directed tumor cell streaming in breast tumors requires the HGF/C-Met signaling pathway. Oncogene, 2017, 36, 2680-2692.	2.6	75
16	Tunneling nanotubes, a novel mode of tumor cell-macrophage communication in tumor cell invasion. Journal of Cell Science, 2019, 132, .	1.2	74
17	A WAVE2-Abi1 complex mediates CSF-1-induced F-actin-rich membrane protrusions and migration in macrophages. Journal of Cell Science, 2005, 118, 5369-5379.	1.2	72
18	Membrane targeting of WAVE2 is not sufficient for WAVE2-dependent actin polymerization: a role for IRSp53 in mediating the interaction between Rac and WAVE2. Journal of Cell Science, 2008, 121, 379-390.	1.2	71

DIANNE COX

#	Article	IF	CITATIONS
19	Genetic deletion of ABP-120 alters the three-dimensional organization of actin filaments in Dictyostelium pseudopods Journal of Cell Biology, 1995, 128, 819-835.	2.3	68
20	Re-expression of ABP-120 rescues cytoskeletal, motility, and phagocytosis defects of ABP-120- Dictyostelium mutants Molecular Biology of the Cell, 1996, 7, 803-823.	0.9	54
21	Reconstitution of in vivo macrophage-tumor cell pairing and streaming motility on one-dimensional micro-patterned substrates. Intravital, 2012, 1, 77-85.	2.0	50
22	Wiskott-Aldrich Syndrome Protein Regulates Leukocyte-Dependent Breast Cancer Metastasis. Cell Reports, 2013, 4, 429-436.	2.9	45
23	A New Genetically Encoded Single-Chain Biosensor for Cdc42 Based on FRET, Useful for Live-Cell Imaging. PLoS ONE, 2014, 9, e96469.	1.1	45
24	N-WASP has the ability to compensate for the loss of WASP in macrophage podosome formation and chemotaxis. Experimental Cell Research, 2010, 316, 3406-3416.	1.2	36
25	The Mechanism of CSF-1-induced Wiskott-Aldrich Syndrome Protein Activation in Vivo. Journal of Biological Chemistry, 2009, 284, 23302-23311.	1.6	33
26	Regulation of tyrosine phosphorylation in macrophage phagocytosis and chemotaxis. Archives of Biochemistry and Biophysics, 2011, 510, 101-111.	1.4	31
27	Tyrosine Phosphorylation of Wiskott-Aldrich Syndrome Protein (WASP) by Hck Regulates Macrophage Function. Journal of Biological Chemistry, 2014, 289, 7897-7906.	1.6	29
28	The Chemotactic Defect in Wiskott-Aldrich Syndrome Macrophages Is Due to the Reduced Persistence of Directional Protrusions. PLoS ONE, 2012, 7, e30033.	1.1	28
29	Optical Tools To Study the Isoform-Specific Roles of Small GTPases in Immune Cells. Journal of Immunology, 2016, 196, 3479-3493.	0.4	21
30	Differential regulation of rho GTPases during lung adenocarcinoma migration and invasion reveals a novel role of the tumor suppressor StarD13 in invadopodia regulation. Cell Communication and Signaling, 2020, 18, 144.	2.7	18
31	Macrophages enhance 3D invasion in a breast cancer cell line by induction of tumor cell tunneling nanotubes. Cancer Reports, 2019, 2, e1213.	0.6	17
32	An In Vitro One-Dimensional Assay to Study Growth Factor-Regulated Tumor Cell–Macrophage Interaction. Methods in Molecular Biology, 2014, 1172, 115-123.	0.4	11
33	Using Fluorescence Resonance Energy Transfer-Based Biosensors to Probe Rho GTPase Activation During Phagocytosis. Methods in Molecular Biology, 2017, 1519, 125-143.	0.4	8
34	Characterization of Genetically Encoded FRET Biosensors for Rho-Family GTPases. Methods in Molecular Biology, 2018, 1821, 87-106.	0.4	4
35	Microscopic Methods for Analysis of Macrophage-Induced Tunneling Nanotubes. Methods in Molecular Biology, 2020, 2108, 273-279.	0.4	4
36	Optogenetics: Rho GTPases Activated by Light in Living Macrophages. Methods in Molecular Biology, 2020, 2108, 281-293.	0.4	3