Yaojie Tu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2677955/publications.pdf Version: 2024-02-01

		430442	414034
39	1,034	18	32
papers	citations	h-index	g-index
39	39	39	621
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Performance of elemental mercury removal by activated char prepared from high-chlorine Turpan-Hami coal. Fuel, 2022, 307, 121817.	3.4	2
2	Effect of biomass coâ€firing position on combustion and NO _{<i>X</i>} emission in a 300â€MWe coalâ€fired tangential boiler. Asia-Pacific Journal of Chemical Engineering, 2022, 17, e2734.	0.8	4
3	Numerical study of fuel-NO formation and reduction in a reversed flow MILD combustion furnace firing ammonia-doped methane. Energy, 2022, 252, 124111.	4.5	9
4	Experimental and numerical investigation on premixed H2/C3H8/air combustion and thermal performance in a burner with partially filled porous media. Fuel, 2022, 328, 125227.	3.4	27
5	A numerical study of accelerated moderate or intense low-oxygen dilution (MILD) combustion stability for methane in a lab-scale furnace by off-stoichiometric combustion technology. Chinese Journal of Chemical Engineering, 2021, 32, 108-118.	1.7	7
6	Numerical simulation of propane MILD combustion in a lab-scale cylindrical furnace. Fuel, 2021, 290, 119858.	3.4	21
7	Nonpremixed Air/Oxygen Jet Burner to Improve Moderate or Intense Low-Oxygen Dilution Combustion Characteristics in Oxygen-Enriched Conditions. Energy & amp; Fuels, 2021, 35, 9609-9622.	2.5	8
8	Evaluation of ignition process and NOx reduction of coal under moderate and intensive low-oxygen dilution combustion by implementing fuel-rich/lean technology. Fuel, 2021, 296, 120657.	3.4	9
9	Influences of initial coal concentration on ignition behaviors of low-NO bias combustion technology. Applied Energy, 2020, 278, 115745.	5.1	19
10	Numerical study of methane combustion under moderate or intense low-oxygen dilution regime at elevated pressure conditions up to 8Âatm. Energy, 2020, 197, 117158.	4.5	17
11	Re-Recognition of the MILD Combustion Regime by Initial Conditions of <i>T</i> _{in} and <i>X</i> _{O2} for Methane in a Nonadiabatic Well-Stirred Reactor. Energy & Fuels, 2020, 34, 2391-2404.	2.5	26
12	Effects of wall temperature on methane MILD combustion and heat transfer behaviors with non-preheated air. Applied Thermal Engineering, 2020, 174, 115282.	3.0	37
13	Thermochemical behavior of three sulfates (CaSO4, K2SO4 and Na2SO4) blended with cement raw materials (CaO-SiO2-Al2O3-Fe2O3) at high temperature. Journal of Analytical and Applied Pyrolysis, 2019, 142, 104617.	2.6	20
14	Experimental investigation on premixed hydrogen/air combustion in varied size combustors inserted with porous medium for thermophotovoltaic system applications. Energy Conversion and Management, 2019, 200, 112086.	4.4	52
15	Numerical study of further NO x emission reduction for coal MILD combustion by combining fuelâ€rich/lean technology. International Journal of Energy Research, 2019, 43, 8492.	2.2	2
16	Numerical investigation the effect of air supply on the biomass combustion in the grate boiler. Energy Procedia, 2019, 158, 272-277.	1.8	2
17	Effect of different operating conditions on the performance of a 32 MW woodchip-fired grate boiler. Energy Procedia, 2019, 158, 898-903.	1.8	3
18	A comparative study of methane MILD combustion in O2/N2, O2/CO2 and O2/H2O. Energy Procedia, 2019, 158, 1473-1478.	1.8	6

ΥΑΟJΙΕ Τυ

#	Article	IF	CITATIONS
19	On the Combination of fuel-rich/lean burner with MILD combustion for further NOx emission reduction. Energy Procedia, 2019, 158, 1672-1677.	1.8	7
20	Detailed gas/particle flow characteristics of an improved down-fired boiler with respect to a critical factor affecting coal burnout: Vent-air inclination angle. Energy, 2019, 182, 570-584.	4.5	11
21	Numerical investigation of the effect of air supply and oxygen enrichment on the biomass combustion in the grate boiler. Applied Thermal Engineering, 2019, 156, 550-561.	3.0	34
22	Numerical study of HCN and NH3 reduction in a two-stage entrained flow gasifier by implementing MILD combustion. Fuel, 2019, 251, 482-495.	3.4	12
23	CFD and kinetic modelling study of methane MILD combustion in O2/N2, O2/CO2 and O2/H2O atmospheres. Applied Energy, 2019, 240, 1003-1013.	5.1	67
24	Numerical study on a novel burner designed to improve MILD combustion behaviors at the oxygen enriched condition. Applied Thermal Engineering, 2019, 152, 686-696.	3.0	30
25	A two-step method for the integrated removal of HCl, SO2 and NO at low temperature using viscose-based activated carbon fibers modified by nitric acid. Fuel, 2019, 239, 272-281.	3.4	27
26	A numerical investigation on the injection timing of boot injection rate-shapes in a kerosene-diesel engine with a clustered dynamic adaptive chemistry method. Applied Energy, 2018, 220, 117-126.	5.1	20
27	NOX reduction in a 40â€ ⁻ t/h biomass fired grate boiler using internal flue gas recirculation technology. Applied Energy, 2018, 220, 962-973.	5.1	54
28	Numerical Study of Biomass Grate Boiler with Coupled Time-Dependent Fuel Bed Model and Computational Fluid Dynamics Based Freeboard Model. Energy & Fuels, 2018, 32, 9493-9505.	2.5	19
29	Flame Characteristics of CH ₄ /H ₂ on a Jet-in-Hot-Coflow Burner Diluted by N ₂ , CO ₂ , and H ₂ O. Energy & Fuels, 2017, 31, 3270-3280.	2.5	50
30	A Refined Global Reaction Mechanism for Gently Preheated MILD Combustion of Methane. Energy & Fuels, 2017, 31, 10144-10157.	2.5	18
31	MILD combustion of natural gas using low preheating temperature air in an industrial furnace. Fuel Processing Technology, 2017, 156, 72-81.	3.7	54
32	Experimental and numerical study on the combustion of a 32 MW wood-chip grate boiler with internal flue gas recirculation technology. Energy Procedia, 2017, 143, 591-598.	1.8	5
33	Numerical Study of MILD Combustion for Pulverized Coal in O2/N2, O2/CO2, and O2/H2O Atmospheres. , 2016, , 157-163.		0
34	Physical and Chemical Effects of CO2Addition on CH4/H2Flames on a Jet in Hot Coflow (JHC) Burner. Energy & Fuels, 2016, , .	2.5	9
35	Effects of furnace chamber shape on the MILD combustion of natural gas. Applied Thermal Engineering, 2015, 76, 64-75.	3.0	65
36	Numerical study of H 2 O addition effects on pulverized coal oxy-MILD combustion. Fuel Processing Technology, 2015, 138, 252-262.	3.7	61

ΥΑΟJΙΕ Τυ

#	Article	IF	CITATIONS
37	Decomposition and solid reactions of calcium sulfate doped with SiO2, Fe2O3 and Al2O3. Journal of Analytical and Applied Pyrolysis, 2015, 113, 491-498.	2.6	62
38	Numerical study of combustion characteristics for pulverized coal under oxy-MILD operation. Fuel Processing Technology, 2015, 135, 80-90.	3.7	62
39	Moderate or Intense Low-Oxygen Dilution Oxy-combustion Characteristics of Light Oil and Pulverized Coal in a Pilot-Scale Furnace. Energy & Fuels, 2014, 28, 1524-1535.	2.5	96