
Zheng-Hong Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2677929/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Holey Graphitic Carbon Nitride Nanosheets with Carbon Vacancies for Highly Improved Photocatalytic Hydrogen Production. Advanced Functional Materials, 2015, 25, 6885-6892.	7.8	898
2	Macroscopic 3D Porous Graphitic Carbon Nitride Monolith for Enhanced Photocatalytic Hydrogen Evolution. Advanced Materials, 2015, 27, 4634-4639.	11.1	567
3	Towards ultrahigh volumetric capacitance: graphene derived highly dense but porous carbons for supercapacitors. Scientific Reports, 2013, 3, 2975.	1.6	541
4	Flexible electrodes and supercapacitors for wearable energy storage: a review by category. Journal of Materials Chemistry A, 2016, 4, 4659-4685.	5.2	493
5	Adsorption of Lead(II) Ions from Aqueous Solution on Low-Temperature Exfoliated Graphene Nanosheets. Langmuir, 2011, 27, 7558-7562.	1.6	407
6	Carbon electrodes for capacitive deionization. Journal of Materials Chemistry A, 2017, 5, 470-496.	5.2	295
7	Capacitive deionization of NaCl solutions using carbon nanotube sponge electrodes. Journal of Materials Chemistry, 2011, 21, 18295.	6.7	230
8	Rational synthesis of MnO2/conducting polypyrrole@carbon nanofiber triaxial nano-cables for high-performance supercapacitors. Journal of Materials Chemistry, 2012, 22, 16943.	6.7	195
9	Coaxial carbon nanofibers/MnO2 nanocomposites as freestanding electrodes for high-performance electrochemical capacitors. Electrochimica Acta, 2011, 56, 9240-9247.	2.6	173
10	Enhanced efficiency of graphene/silicon heterojunction solar cells by molecular doping. Journal of Materials Chemistry A, 2013, 1, 5736.	5.2	166
11	Nitrogen-enriched electrospun porous carbon nanofiber networks as high-performance free-standing electrode materials. Journal of Materials Chemistry A, 2014, 2, 19678-19684.	5.2	165
12	Ultrahigh-rate and high-density lithium-ion capacitors through hybriding nitrogen-enriched hierarchical porous carbon cathode with prelithiated microcrystalline graphite anode. Nano Energy, 2015, 15, 43-53.	8.2	156
13	Porphyrin-Based Nanostructures for Photocatalytic Applications. Nanomaterials, 2016, 6, 51.	1.9	150
14	Glucose-Promoted Zn-Based Metal–Organic Framework/Graphene Oxide Composites for Hydrogen Sulfide Removal. ACS Applied Materials & Interfaces, 2012, 4, 4942-4947.	4.0	144
15	A high performance Li-ion capacitor constructed with Li4Ti5O12/C hybrid and porous graphene macroform. Journal of Power Sources, 2015, 282, 174-178.	4.0	144
16	An efficient flexible electrochemical glucose sensor based on carbon nanotubes/carbonized silk fabrics decorated with Pt microspheres. Sensors and Actuators B: Chemical, 2018, 256, 63-70.	4.0	109
17	Facile synthesis of nitrogen-doped carbon nanosheets with hierarchical porosity for high performance supercapacitors and lithium–sulfur batteries. Journal of Materials Chemistry A, 2015, 3, 18400-18405.	5.2	107
18	Relation between the Charge Efficiency of Activated Carbon Fiber and Its Desalination Performance. Langmuir, 2012, 28, 5079-5084.	1.6	99

#	Article	IF	CITATIONS
19	Preparation of microporous carbon nanofibers from polyimide by using polyvinyl pyrrolidone as template and their capacitive performance. Journal of Power Sources, 2015, 278, 683-692.	4.0	90
20	Oxidation State Modulation of Bismuth for Efficient Electrocatalytic Nitrogen Reduction to Ammonia. Advanced Functional Materials, 2021, 31, 2100300.	7.8	90
21	Three-dimensional reduced graphene oxide powder for efficient microwave absorption in the S-band (2–4 GHz). RSC Advances, 2017, 7, 25773-25779.	1.7	89
22	Synthesis of activated carbon nanospheres with hierarchical porous structure for high volumetric performance supercapacitors. Electrochimica Acta, 2015, 182, 908-916.	2.6	86
23	Integrating porphyrin nanoparticles into a 2D graphene matrix for free-standing nanohybrid films with enhanced visible-light photocatalytic activity. Nanoscale, 2014, 6, 978-985.	2.8	84
24	Adsorption of trace polar methy-ethyl-ketone and non-polar benzene vapors on viscose rayon-based activated carbon fibers. Carbon, 2002, 40, 1363-1367.	5.4	82
25	Breakthrough of methyethylketone and benzene vapors in activated carbon fiber beds. Journal of Hazardous Materials, 2003, 98, 107-115.	6.5	82
26	Electrospun ultrafine carbon fiber webs for electrochemical capacitive desalination. New Journal of Chemistry, 2010, 34, 1843.	1.4	82
27	Ordered mesoporous carbon nanospheres as electrode materials for high-performance supercapacitors. Electrochemistry Communications, 2013, 36, 66-70.	2.3	79
28	Porous mesocarbon microbeads with graphitic shells: constructing a high-rate, high-capacity cathode for hybrid supercapacitor. Scientific Reports, 2013, 3, 2477.	1.6	79
29	Activated carbon fibers loaded with MnO2 for removing NO at room temperature. Chemical Engineering Journal, 2014, 256, 101-106.	6.6	74
30	Electrospun carbon nanofiber networks from phenolic resin for capacitive deionization. Chemical Engineering Journal, 2014, 252, 30-37.	6.6	73
31	Nobleâ€Metalâ€Free Hybrid Membranes for Highly Efficient Hydrogen Evolution. Advanced Materials, 2017, 29, 1603617.	11.1	73
32	High-performance sodium-ion hybrid capacitors based on an interlayer-expanded MoS2/rGO composite: surpassing the performance of lithium-ion capacitors in a uniform system. NPG Asia Materials, 2018, 10, 775-787.	3.8	71
33	Graphene oxide-embedded porous carbon nanofiber webs by electrospinning for capacitive deionization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 444, 153-158.	2.3	68
34	Graphitic carbon nitride nanosheet-assisted preparation of N-enriched mesoporous carbon nanofibers with improved capacitive performance. Carbon, 2015, 94, 342-348.	5.4	65
35	One-step green fabrication of hierarchically porous hollow carbon nanospheres (HCNSs) from raw biomass: Formation mechanisms and supercapacitor applications. Journal of Colloid and Interface Science, 2021, 581, 238-250.	5.0	65
36	Largeâ€Area Flexible Core–Shell Graphene/Porous Carbon Woven Fabric Films for Fiber Supercapacitor Electrodes. Advanced Functional Materials, 2013, 23, 4862-4869.	7.8	62

#	Article	IF	CITATIONS
37	Reduced-sized monolayer carbon nitride nanosheets for highly improved photoresponse for cell imaging and photocatalysis. Science China Materials, 2017, 60, 109-118.	3.5	60
38	Ultrahigh rate sodium ion storage with nitrogen-doped expanded graphite oxide in ether-based electrolyte. Journal of Materials Chemistry A, 2018, 6, 1582-1589.	5.2	60
39	NO removal by electrospun porous carbon nanofibers at room temperature. Chemical Engineering Journal, 2011, 170, 505-511.	6.6	59
40	Pore Structure and Fractal Characteristics of Activated Carbon Fibers Characterized by Using HRTEM. Journal of Colloid and Interface Science, 2002, 249, 453-457.	5.0	57
41	Polyimideâ€based porous hollow carbon nanofibers for supercapacitor electrode. Journal of Applied Polymer Science, 2016, 133, .	1.3	55
42	A Composite Polymeric Carbon Nitride with In Situ Formed Isotype Heterojunctions for Highly Improved Photocatalysis under Visible Light. Small, 2017, 13, 1603182.	5.2	55
43	Asymmetric Supercapacitors Based on Hierarchically Nanoporous Carbon and ZnCo2O4 From a Single Biometallic Metal-Organic Frameworks (Zn/Co-MOF). Frontiers in Chemistry, 2020, 8, 719.	1.8	54
44	Activated carbon fibers with manganese dioxide coating for flexible fiber supercapacitors with high capacitive performance. Journal of Energy Chemistry, 2019, 31, 95-100.	7.1	53
45	Electrospun preparation of microporous carbon ultrafine fibers with tuned diameter, pore structure and hydrophobicity from phenolic resin. Carbon, 2014, 66, 705-712.	5.4	51
46	Facile fabrication of three-dimensional interconnected nanoporous N-TiO 2 for efficient photoelectrochemical water splitting. Journal of Materials Science and Technology, 2018, 34, 955-960.	5.6	50
47	Porous carbon for electrochemical capacitors prepared from a resorcinol/formaldehyde-based organic aquagel with nano-sized particles. Journal of Materials Chemistry, 2012, 22, 7158.	6.7	49
48	A high-power lithium-ion hybrid electrochemical capacitor based on citrate-derived electrodes. Electrochimica Acta, 2017, 228, 76-81.	2.6	49
49	A facile route to high nitrogen-containing porous carbon fiber sheets from biomass-flax for high-performance flexible supercapacitors. Applied Surface Science, 2020, 507, 145108.	3.1	48
50	Wasp nest-imitated assembly of elastic rGO/p-Ti3C2Tx MXene-cellulose nanofibers for high-performance sodium-ion batteries. Carbon, 2019, 153, 625-633.	5.4	47
51	Synthesis of reduced graphene oxide/phenolic resin-based carbon composite ultrafine fibers and their adsorption performance for volatile organic compounds and water. Journal of Materials Chemistry A, 2013, 1, 9536.	5.2	46
52	Hierarchical Micro-/Mesoporous Carbon Derived from Rice Husk by Hydrothermal Pre-Treatment for High Performance Supercapacitor. Journal of the Electrochemical Society, 2018, 165, A3334-A3341.	1.3	46
53	Advanced Materials for Sodiumâ€lon Capacitors with Superior Energy–Power Properties: Progress and Perspectives. Small, 2020, 16, e1902843.	5.2	45
54	Hydrothermal Synthesis of Graphene/ <scp><scp>Bi</scp></scp> ₂ <scp>WO</scp> ₆ Composite with High Adsorptivity and Photoactivity for Azo Dyes. Journal of the American Ceramic Society, 2013, 96, 1562-1569.	1.9	44

#	Article	IF	CITATIONS
55	Polymer-coated graphene films as anti-reflective transparent electrodes for Schottky junction solar cells. Journal of Materials Chemistry A, 2016, 4, 13795-13802.	5.2	44
56	Flour food waste derived activated carbon for high-performance supercapacitors. RSC Advances, 2016, 6, 89391-89396.	1.7	44
57	High areal specific capacity of Ni ₃ V ₂ O ₈ /carbon cloth hierarchical structures as flexible anodes for sodium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 15517-15524.	5.2	43
58	From upcycled waste polyethylene plastic to graphene/mesoporous carbon for high-voltage supercapacitors. Journal of Colloid and Interface Science, 2019, 557, 55-64.	5.0	43
59	Porous and ultrafine nitrogen-doped carbon nanofibers from bacterial cellulose with superior adsorption capacity for adsorption removal of low-concentration 4-chlorophenol. Chemical Engineering Journal, 2021, 420, 127411.	6.6	42
60	A supercapacitor constructed with a partially graphitized porous carbon and its performance over a wide working temperature range. Journal of Materials Chemistry A, 2015, 3, 18860-18866.	5.2	41
61	High performance lithium-ion capacitors based on scalable surface carved multi-hierarchical construction electrospun carbon fibers. Carbon, 2018, 138, 325-336.	5.4	41
62	Adsorption of 2,4-dichlorophenol from Aqueous Solution by a New Low-Cost Adsorbent – Activated Bamboo Charcoal. Separation Science and Technology, 2010, 45, 2329-2336.	1.3	40
63	Dual-ion hybrid supercapacitor: Integration of Li-ion hybrid supercapacitor and dual-ion battery realized by porous graphitic carbon. Journal of Energy Chemistry, 2020, 42, 180-184.	7.1	39
64	Facile Synthesis of Crystalline Polymeric Carbon Nitrides with an Enhanced Photocatalytic Performance under Visible Light. ChemCatChem, 2015, 7, 2897-2902.	1.8	38
65	In-situ growth of MnO2 crystals under nanopore-constraint in carbon nanofibers and their electrochemical performance. Scientific Reports, 2016, 6, 37368.	1.6	38
66	Catalytically oxidation of NO into NO2 at room temperature by graphitized porous nanofibers. Catalysis Today, 2013, 201, 109-114.	2.2	35
67	Effects of Electrospun Carbon Nanofibers' Interlayers on High-Performance Lithium–Sulfur Batteries. Materials, 2017, 10, 376.	1.3	35
68	Carbon-coated TiO2 composites for the photocatalytic degradation of low concentration benzene. New Carbon Materials, 2011, 26, 63-70.	2.9	34
69	Adsorption of dimethyl sulfide from aqueous solution by a cost-effective bamboo charcoal. Journal of Hazardous Materials, 2011, 190, 1009-1015.	6.5	34
70	Electrospun magnetic carbon composite fibers: Synthesis and electromagnetic wave absorption characteristics. Journal of Applied Polymer Science, 2013, 127, 4288-4295.	1.3	34
71	Porous carbon nanofibers with narrow pore size distribution from electrospun phenolic resins. Materials Letters, 2011, 65, 1875-1877.	1.3	33
72	Synthesis and photocatalytic activity of mesoporous g-C 3 N 4 /MoS 2 hybrid catalysts. Royal Society Open Science, 2018, 5, 180187.	1.1	32

#	Article	IF	CITATIONS
73	Effect of oxidative stabilization on the sintering of mesocarbon microbeads and a study of their carbonization. Carbon, 2011, 49, 3200-3211.	5.4	31
74	Preparation of flexible phenolic resin-based porous carbon fabrics by electrospinning. Chemical Engineering Journal, 2013, 218, 232-237.	6.6	31
75	Homogenous and highly isotropic graphite produced from mesocarbon microbeads. Carbon, 2015, 94, 18-26.	5.4	31
76	NH3-activated carbon nanofibers for low-concentration NO removal at room temperature. Catalysis Communications, 2015, 62, 83-88.	1.6	30
77	Scalable synthesis of lotus-seed-pod-like Si/SiOx@CNF: Applications in freestanding electrode and flexible full lithium-ion batteries. Carbon, 2020, 158, 163-171.	5.4	30
78	Facile synthesis of bimodal macroporous g-C3N4/SnO2 nanohybrids with enhanced photocatalytic activity. Science Bulletin, 2019, 64, 44-53.	4.3	29
79	Preparation of graphene/carbon hybrid nanofibers and their performance for NO oxidation. Carbon, 2015, 87, 282-291.	5.4	27
80	Building Carbonâ€Based Versatile Scaffolds on the Electrode Surface to Boost Capacitive Performance for Fiber Pseudocapacitors. Small, 2019, 15, e1900721.	5.2	26
81	Nitrogen-rich hierarchical porous hollow carbon nanofibers for high-performance supercapacitor electrodes. RSC Advances, 2016, 6, 41473-41476.	1.7	25
82	Environment-friendly preparation of exfoliated graphite and functional graphite sheets. Journal of Materiomics, 2021, 7, 136-145.	2.8	25
83	Surface oxidation of activated electrospun carbon nanofibers and their adsorption performance for benzene, butanone and ethanol. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 443, 66-71.	2.3	23
84	GO/auricularia-derived hierarchical porous carbon used for capacitive deionization with high performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 547, 134-140.	2.3	23
85	Porous nitrogen and oxygen co-doped carbon microtubes derived from plane tree fruit fluff for high-performance supercapacitors. Journal of Materials Science: Materials in Electronics, 2019, 30, 1468-1479.	1.1	23
86	Nitrogen/Oxygen Dual-Doped Carbon Nanofibers as an Electrocatalytic Interlayer for a High Sulfur Content Lithium–Sulfur Battery. ACS Applied Energy Materials, 2019, 2, 777-787.	2.5	23
87	Preparation of porous carbon nanofibers with controllable pore structures for low-concentration NO removal at room temperature. New Carbon Materials, 2016, 31, 277-286.	2.9	22
88	Thermal and gas purification of natural graphite for nuclear applications. Carbon, 2021, 173, 769-781.	5.4	22
89	Adsorption of benzene and ethanol on activated carbon nanofibers prepared by electrospinning. Adsorption, 2013, 19, 1035-1043.	1.4	21
90	Microstructure and thermal expansion behavior of natural microcrystalline graphite. Carbon, 2021, 177, 90-96.	5.4	21

#	Article	IF	CITATIONS
91	Facile fabrication of organic/inorganic nanotube heterojunction arrays for enhanced photoelectrochemical water splitting. Nanoscale, 2016, 8, 13228-13235.	2.8	20
92	Modifying porous carbon nanofibers with MnO _x –CeO ₂ –Al ₂ O ₃ mixed oxides for NO catalytic oxidation at room temperature. Catalysis Science and Technology, 2016, 6, 422-425.	2.1	20
93	Inorganic Nanotube/Organic Nanoparticle Hybrids for Enhanced Photoelectrochemical Properties. Journal of Materials Science and Technology, 2017, 33, 728-733.	5.6	20
94	A High Performance Lithium-Ion Capacitor with Both Electrodes Prepared from Sri Lanka Graphite Ore. Materials, 2017, 10, 414.	1.3	20
95	Ultrasensitive molecular sensing of few-layer niobium diselenide. Journal of Materials Chemistry A, 2021, 9, 2725-2733.	5.2	20
96	Preparation of porous carbons from halloysite-sucrose mixtures. Clays and Clay Minerals, 2006, 54, 485-490.	0.6	19
97	Effect of heat treatment on adsorption performance and photocatalytic activity of TiO2-mounted activated carbon cloths. Catalysis Today, 2008, 139, 64-68.	2.2	19
98	Hierarchical design of nitrogen-doped porous carbon nanorods for use in high efficiency capacitive energy storage. RSC Advances, 2017, 7, 22447-22453.	1.7	19
99	Silver Nanoparticles-Loaded Exfoliated Graphite and Its Anti-Bacterial Performance. Applied Sciences (Switzerland), 2017, 7, 852.	1.3	19
100	High Areal Capacity Liâ€lon Storage of Binderâ€Free Metal Vanadate/Carbon Hybrid Anode by Ionâ€Exchange Reaction. Small, 2018, 14, e1801832.	5.2	19
101	3D porous Li3VO4@C composite anodes with ultra-high rate capacity for lithium-ion capacitors. Electrochimica Acta, 2020, 355, 136819.	2.6	19
102	Self-supporting nitrogen-doped reduced graphene oxide@carbon nanofiber hybrid membranes as high-performance integrated air cathodes in microbial fuel cells. Carbon, 2022, 193, 242-257.	5.4	18
103	Adsorption Characteristics of Trace Volatile Organic Compounds on Activated Carbon Fibres at Room Temperature. Adsorption Science and Technology, 2002, 20, 495-500.	1.5	17
104	Sulfur-Doped Reduced Graphene Oxide for Enhanced Sodium Ion Pseudocapacitance. Nanomaterials, 2019, 9, 752.	1.9	17
105	Wettability of natural microcrystalline graphite filler with pitch in isotropic graphite preparation. Fuel, 2016, 180, 743-748.	3.4	16
106	Steam Selective Etching: A Strategy to Effectively Enhance the Flexibility and Suppress the Volume Change of Carbonized Paper-Supported Electrodes. ACS Nano, 2019, 13, 5731-5741.	7.3	16
107	MoS ₂ /carbon composites prepared by ball-milling and pyrolysis for the high-rate and stable anode of lithium ion capacitors. RSC Advances, 2019, 9, 42316-42323.	1.7	16
108	Porous Carbon Nanofibers: Preparation and Potential Applications. Current Organic Chemistry, 2013, 17, 1434-1447.	0.9	16

#	Article	IF	CITATIONS
109	Improvement of the hydrophilicity of electrospun porous carbon nanofibers by grafting phenylsulfonic acid groups. Journal of Colloid and Interface Science, 2013, 394, 177-182.	5.0	15
110	Nitrogen-doped hollow graphite granule as anode materials for high-performance lithium-ion batteries. Journal of Solid State Chemistry, 2021, 303, 122500.	1.4	15
111	Organic semiconductor nanostructures: optoelectronic properties, modification strategies, and photocatalytic applications. Journal of Materials Science and Technology, 2022, 113, 175-198.	5.6	15
112	Hybrid graphene/amorphous carbon films with tadpole-like structures for high-performance photovoltaic applications. RSC Advances, 2013, 3, 22295.	1.7	14
113	Beneficiation of ultra-large flake graphite and the preparation of flexible graphite sheets from it. New Carbon Materials, 2019, 34, 205-210.	2.9	14
114	Synergistic Doping for Pseudocapacitance Sites in Alkaline Carbon Supercapacitors. ChemElectroChem, 2018, 5, 84-92.	1.7	13
115	Pseudocapacitive porous hard carbon anode with controllable pyridinic nitrogen and thiophene sulfur co-doping for high-power dual-carbon sodium ion hybrid capacitors. Journal of Materials Chemistry A, 2021, 9, 20483-20492.	5.2	13
116	The molecular simulation and experimental investigation of toluene and naphthalene adsorption on ordered porous silica. Chemical Engineering Journal, 2022, 435, 134844.	6.6	13
117	Silicon-Encapsulated Hollow Carbon Nanofiber Networks as Binder-Free Anodes for Lithium Ion Battery. Journal of Nanomaterials, 2014, 2014, 1-10.	1.5	12
118	Soft magnetic performance improvement of Fe-filled carbon nanotubes by water-assisted pyrolysis route. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 867-873.	0.8	11
119	Flexible C–Mo ₂ C fiber film with self-fused junctions as a long cyclability anode material for sodium-ion battery. RSC Advances, 2018, 8, 16657-16662.	1.7	11
120	Preparation and performance of electrochemical glucose sensors based on copper nanoparticles loaded on flexible graphite sheet. New Carbon Materials, 2020, 35, 410-419.	2.9	11
121	Electrochemical synthesis of graphene oxide from graphite flakes exfoliated at room temperature. Applied Surface Science, 2022, 598, 153788.	3.1	11
122	Hydrothermal Synthesis of Iodine-Doped Nanoplates with Enhanced Visible and Ultraviolet-Induced Photocatalytic Activities. International Journal of Photoenergy, 2012, 2012, 1-12.	1.4	10
123	Asymmetric Electrodes Constructed with PAN-Based Activated Carbon Fiber in Capacitive Deionization. Journal of Nanomaterials, 2014, 2014, 1-6.	1.5	10
124	Interface enhancement of carbon nanotube/mesocarbon microbead isotropic composites. Composites Part A: Applied Science and Manufacturing, 2014, 56, 44-50.	3.8	10
125	Facile synthesis of FeVO@C materials as high-performance composite cathode for lithium-ion hybrid capacitor. Journal of Alloys and Compounds, 2020, 835, 155398.	2.8	10
126	Ultrasensitive Non-Enzymatic Glucose Sensors Based on Hybrid Reduced Graphene Oxide and Carbonized Silk Fabric Electrodes Decorated with Cu Nanoflowers. Journal of the Electrochemical Society, 2020, 167, 127501.	1.3	10

#	Article	IF	CITATIONS
127	Exfoliated graphite blocks with resilience prepared by room temperature exfoliation and their application for oil-water separation. Journal of Hazardous Materials, 2022, 424, 127724.	6.5	10
128	Nano-scaled top-down of bismuth chalcogenides based on electrochemical lithium intercalation. Journal of Nanoparticle Research, 2011, 13, 6569-6578.	0.8	9
129	Graphene/carbon composite nanofibers for NO oxidation at room temperature. Catalysis Science and Technology, 2015, 5, 827-829.	2.1	9
130	A 3D lithium metal anode reinforced by scalable in-situ copper oxide nanostick copper mesh. Journal of Alloys and Compounds, 2021, 865, 158908.	2.8	9
131	Hierarchically porous carbons with diverse microstructures derived from crude oil via "One-for-All― strategy. Carbon, 2021, 184, 340-345.	5.4	9
132	Nitrogen-enriched hierarchical porous carbon with enhanced performance in supercapacitors and lithium–sulfur batteries. RSC Advances, 2015, 5, 75403-75410.	1.7	8
133	An â€~ice-melting' kinetic control strategy for highly photocatalytic organic nanocrystals. Journal of Materials Chemistry A, 2020, 8, 25275-25282.	5.2	7
134	SiOx@Si-graphite microspheres for high-stable anode of lithium-ion batteries. Electrochimica Acta, 2022, 426, 140795.	2.6	7
135	Adsorption of Volatile Organic Compounds on Activated Carbon Fiber Preparedby Carbon Dioxide. Molecular Crystals and Liquid Crystals, 2002, 388, 23-28.	0.4	6
136	Monolithic organic/inorganic ternary nanohybrids toward electron transfer cascade for enhanced visible-light photocatalysis. RSC Advances, 2015, 5, 23174-23180.	1.7	6
137	Combining Multiple Methods for Recycling of Kish Graphite from Steelmaking Slags and Oil Sorption Performance of Kish-Based Expanded Graphite. ACS Omega, 2021, 6, 9868-9875.	1.6	6
138	Na0.76V6O15/Activated Carbon Hybrid Cathode for High-Performance Lithium-Ion Capacitors. Materials, 2021, 14, 122.	1.3	6
139	A novel and facile prepared wound dressing based on large expanded graphite worms. Journal of Materials Research, 2019, 34, 490-499.	1.2	5
140	A Highly Sensitive Electrochemical Glucose Sensor Based on Room Temperature Exfoliated Graphite-Derived Film Decorated with Dendritic Copper. Materials, 2021, 14, 5067.	1.3	4
141	Nanostructured LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ as a cathode material for highâ€power lithiumâ€ion battery. Asia-Pacific Journal of Chemical Engineering, 2008, 3, 527-530.	0.8	3
142	Chemisorption of hydrogen sulfide on halloysiteâ€based porous clay heterostructures modified with potassium permanganate. Asia-Pacific Journal of Chemical Engineering, 2011, 6, 879-885.	0.8	3
143	Hydrogen Evolution: Holey Graphitic Carbon Nitride Nanosheets with Carbon Vacancies for Highly Improved Photocatalytic Hydrogen Production (Adv. Funct. Mater. 44/2015). Advanced Functional Materials, 2015, 25, 6952-6952.	7.8	3
144	Blow-spun N-doped carbon fiber based high performance flexible lithium ion capacitors. RSC Advances, 2020, 10, 9833-9839.	1.7	3

#	Article	IF	CITATIONS
145	Effect of CO in activating gas on the pore structure of activated carbon fiber with CO2 activation. Journal of Materials Science Letters, 2003, 22, 293-295.	0.5	2
146	Effect of Temperature on the Adsorption of Organic Vapours on Activated Carbon Fibres. Adsorption Science and Technology, 2004, 22, 327-335.	1.5	2
147	Removal of volatile organic compounds by adsorption and photocatalytic oxydation. Journal Wuhan University of Technology, Materials Science Edition, 2007, 22, 450-452.	0.4	2
148	Synthesis of porous graphitic carbon from mesocarbon microbeads by one-step route. Journal of Porous Materials, 2013, 20, 1323-1328.	1.3	2
149	Carbon Nanomaterials and Related Nanostructures: Synthesis, Characterization, and Application. Journal of Nanomaterials, 2014, 2014, 1-1.	1.5	1