Shinya Sakaguchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2677699/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Complex Interplay Between MAZR and Runx3 Regulates the Generation of Cytotoxic T Lymphocyte and Memory T Cells. Frontiers in Immunology, 2021, 12, 535039.	4.8	3
2	24-Norursodeoxycholic acid reshapes immunometabolism in CD8+ T cells and alleviates hepatic inflammation. Journal of Hepatology, 2021, 75, 1164-1176.	3.7	20
3	The Tyrosine Kinase Tec Regulates Effector Th17 Differentiation, Pathogenicity, and Plasticity in T-Cell-Driven Intestinal Inflammation. Frontiers in Immunology, 2021, 12, 750466.	4.8	5
4	217 24-NOR-URSODEOXYCHOLIC ACID AMELIORATES INTESTINAL INFLAMMATION BY COUNTERACTING TH17/TREG IMBALANCE VIA REDIRECTING MTOR METABOLIC SENSING PROGRAMS IN CD4+ T CELLS. Gastroenterology, 2020, 158, S-1262.	1.3	0
5	Histone deacetylases 1 and 2 restrain CD4+ cytotoxic T lymphocyte differentiation. JCI Insight, 2020, 5, .	5.0	23
6	The zinc-finger transcription factor MAZR regulates iNKT cell subset differentiation. Cellular and Molecular Life Sciences, 2019, 76, 4391-4404.	5.4	5
7	Differential Requirement of Cd8 Enhancers E8I and E8VI in Cytotoxic Lineage T Cells and in Intestinal Intraepithelial Lymphocytes. Frontiers in Immunology, 2019, 10, 409.	4.8	5
8	The Transcription Factor MAZR/PATZ1 Regulates the Development of FOXP3+ Regulatory T Cells. Cell Reports, 2019, 29, 4447-4459.e6.	6.4	13
9	The corepressor NCOR1 regulates the survival of single-positive thymocytes. Scientific Reports, 2017, 7, 15928.	3.3	14
10	Acetylation of the Cd8 Locus by KAT6A Determines Memory T Cell Diversity. Cell Reports, 2016, 16, 3311-3321.	6.4	25
11	PATZ1 Is a DNA Damage-Responsive Transcription Factor That Inhibits p53 Function. Molecular and Cellular Biology, 2015, 35, 1741-1753.	2.3	27
12	A novel <i>Cd8-cis</i> -regulatory element preferentially directs expression in CD44hiCD62L+ CD8+ T cells and in CD8 <i>αα</i> + dendritic cells. Journal of Leukocyte Biology, 2015, 97, 635-644.	3.3	10
13	MAZR and Runx Factors Synergistically Repress ThPOK during CD8+ T Cell Lineage Development. Journal of Immunology, 2015, 195, 2879-2887.	0.8	25
14	DNA Repair Cofactors ATMIN and NBS1 Are Required to Suppress T Cell Activation. PLoS Genetics, 2015, 11, e1005645.	3.5	15
15	CD4+ T cell lineage integrity is controlled by the histone deacetylases HDAC1 and HDAC2. Nature Immunology, 2014, 15, 439-448.	14.5	70
16	Transcriptional reprogramming of mature CD4+ helper T cells generates distinct MHC class Il–restricted cytotoxic T lymphocytes. Nature Immunology, 2013, 14, 281-289.	14.5	306
17	The Transcription Factor MAZR Preferentially Acts as a Transcriptional Repressor in Mast Cells and Plays a Minor Role in the Regulation of Effector Functions in Response to FcεRI Stimulation. PLoS ONE, 2013, 8, e77677.	2.5	9
18	<i>Cd8</i> enhancer <i> E8 _I </i> and Runx factors regulate CD8α expression in activated CD8 ⁺ T cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18330-18335.	7.1	41

Shinya Sakaguchi

#	Article	IF	CITATIONS
19	The zinc-finger protein MAZR is part of the transcription factor network that controls the CD4 versus CD8 lineage fate of double-positive thymocytes. Nature Immunology, 2010, 11, 442-448.	14.5	89
20	Impaired Tâ€cell development in the absence of Vav1 and Itk. European Journal of Immunology, 2008, 38, 3530-3542.	2.9	11
21	A critical link between Toll-like receptor 3 and type II interferon signaling pathways in antiviral innate immunity. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20446-20451.	7.1	191
22	Tyrosine Kinases Btk and Tec Regulate Osteoclast Differentiation by Linking RANK and ITAM Signals. Cell, 2008, 132, 794-806.	28.9	297
23	The transcriptional regulator PLZF induces the development of CD44 high memory phenotype T cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17919-17924.	7.1	78
24	Evidence for licensing of IFN-Î ³ -induced IFN regulatory factor 1 transcription factor by MyD88 in Toll-like receptor-dependent gene induction program. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 15136-15141.	7.1	261
25	Essential role of IRF-3 in lipopolysaccharide-induced interferon-β gene expression and endotoxin shock. Biochemical and Biophysical Research Communications, 2003, 306, 860-866.	2.1	242
26	Selective contribution of IFN-Â/Â signaling to the maturation of dendritic cells induced by double-stranded RNA or viral infection. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10872-10877.	7.1	337
27	Requirement of the IFN-α/β-induced CXCR3 chemokine signalling for CD8+T cell activation. Genes To Cells, 2002, 7, 309-320.	1.2	59