
Vanderley John

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2676560/publications.pdf Version: 2024-02-01

Νανήσερι εν Ιωμί

#	Article	IF	CITATIONS
1	The influence of environment and carbonation of fiber cement tiles on the reflectance of a cool surface exposed in four Brazilian cities. Energy and Buildings, 2022, 254, 111550.	3.1	1
2	Carbon dioxide emissions, embodied energy, material use efficiency of lumber manufactured from planted forest in Brazil. Journal of Building Engineering, 2022, 52, 104349.	1.6	4
3	MgAl-Layered Double Hydroxide Nanoparticles as Smart Nanofillers To Control the Rheological Properties and the Residual Porosity of Cement-Based Materials. ACS Applied Nano Materials, 2022, 5, 7896-7907.	2.4	6
4	Decontamination and re-use of surgical masks and respirators during the COVID-19 pandemic. International Journal of Infectious Diseases, 2021, 104, 320-328.	1.5	12
5	CO2 footprint of Amazon lumber: A meta-analysis. Resources, Conservation and Recycling, 2021, 167, 105380.	5.3	6
6	Filtration efficiency of a large set of COVID-19 face masks commonly used in Brazil. Aerosol Science and Technology, 2021, 55, 1028-1041.	1.5	37
7	Potential CO ₂ reduction and uptake due to industrialization and efficient cement use in Brazil by 2050. Journal of Industrial Ecology, 2021, 25, 344-358.	2.8	18
8	Effects of filler mineralogy on the compressive strength of cementitious mortars. Construction and Building Materials, 2021, 299, 124363.	3.2	5
9	Stakeholder influence on global warming potential of reinforced concrete structure. Journal of Building Engineering, 2021, 44, 102979.	1.6	5
10	Microstructures of Building Materials from Huaca De La Luna, Peru. International Journal of Architectural Heritage, 2020, 14, 256-273.	1.7	3
11	Influence of cement strength class on environmental impact of concrete. Resources, Conservation and Recycling, 2020, 163, 105075.	5.3	15
12	Environmental impacts and decarbonization strategies in the cement and concrete industries. Nature Reviews Earth & Environment, 2020, 1, 559-573.	12.2	483
13	Primary data priorities for the life cycle inventory of construction products: focus on foreground processes. International Journal of Life Cycle Assessment, 2020, 25, 980-997.	2.2	18
14	Efficiency of Portland-pozzolana cements: Water demand, chemical reactivity and environmental impact. Construction and Building Materials, 2020, 247, 118546.	3.2	34
15	Effects of natural aging on the properties of a cool surface exposed in different Brazilian environments. Energy and Buildings, 2020, 221, 110031.	3.1	13
16	Evaluation of the use of crushed returned concrete as recycled aggregate in ready-mix concrete plant. Journal of Building Engineering, 2020, 31, 101408.	1.6	11
17	Comparing the Ecoefficiency of Cements Containing Calcined Clay and Limestone Filler. RILEM Bookseries, 2020, , 245-255.	0.2	3
18	Ulcer pressure prevention and opportunity for innovation during the COVID-19 crisis. Clinics, 2020, 75, e2292.	0.6	4

#	Article	IF	CITATIONS
19	AVALIAÇÃO DO CICLO DE VIDA DO CONCRETO DOSADO EM CENTRAL COM BASE EM DADOS DA INDÚSTRIA BRASILEIRA. CONCRETO & Construções, 2020, XLVIII, 91-97.	0.2	4
20	Material flow analysis and material use efficiency of Brazil's mortar and concrete supply chain. Journal of Industrial Ecology, 2019, 23, 1396-1409.	2.8	10
21	Variability of environmental impact of ready-mix concrete: a case study for Brazil. IOP Conference Series: Earth and Environmental Science, 2019, 323, 012132.	0.2	9
22	Rethinking cement standards: Opportunities for a better future. Cement and Concrete Research, 2019, 124, 105832.	4.6	56
23	Waste generation from the production of ready-mixed concrete. Waste Management, 2019, 94, 146-152.	3.7	24
24	Evaluation of Portland pozzolan blended cements containing diatomaceous earth. Ceramica, 2019, 65, 75-86.	0.3	8
25	Global Concrete Water Footprint. , 2019, , .		1
26	Consumption of superplasticizer admixture for different cements and their binder efficiency. Revista IBRACON De Estruturas E Materiais, 2019, 12, 1260-1287.	0.3	1
27	Fillers in cementitious materials — Experience, recent advances and future potential. Cement and Concrete Research, 2018, 114, 65-78.	4.6	123
28	Education for sustainable use of cement based materials. Cement and Concrete Research, 2018, 114, 103-114.	4.6	27
29	Carbon dioxide reduction potential in the global cement industry by 2050. Cement and Concrete Research, 2018, 114, 115-124.	4.6	359
30	Effect of mixing method on the mini-slump spread of Portland cement pastes. Revista IBRACON De Estruturas E Materiais, 2018, 11, 410-431.	0.3	11
31	The Era of Engineering Grand Challenges. Polytechnica, 2018, 1, 1-3.	2.1	0
32	Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cement and Concrete Research, 2018, 114, 2-26.	4.6	1,390
33	Retracción quÃmica de pastas de cemento con incorporación de metacaolÃn. Ambiente ConstruÃdo, 2018, 18, 327-339.	0.2	3
34	Roughness, wettability and water absorption of water repellent treated recycled aggregates. Construction and Building Materials, 2017, 146, 502-513.	3.2	57
35	Life cycle water inventory in concrete production—A review. Resources, Conservation and Recycling, 2017, 122, 227-250.	5.3	31
36	Logging residues and CO 2 of Brazilian Amazon timber: Two case studies of forest harvesting. Resources, Conservation and Recycling, 2017, 122, 280-285.	5.3	31

#	Article	IF	CITATIONS
37	Influence of high contents of limestone fines on rheological behaviour and bond strength of cement-based mortars. Construction and Building Materials, 2017, 156, 1114-1126.	3.2	29
38	Influence of packing and dispersion of particles on the cement content of concretes. Revista IBRACON De Estruturas E Materiais, 2017, 10, 998-1024.	0.3	15
39	Efeito do teor e da dispersão de fino calcário na aderência substrato-matriz cimentÃcia. Ambiente ConstruÃdo, 2016, 16, 21-34.	0.2	3
40	Viscosity prediction of cement-filler suspensions using interference model: A route for binder efficiency enhancement. Cement and Concrete Research, 2016, 84, 8-19.	4.6	43
41	Rationalizing the impact of aging on fiber–matrix interface and stability of cement-based composites submitted to carbonation at early ages. Journal of Materials Science, 2016, 51, 7929-7943.	1.7	21
42	Variability in the life cycle of concrete block CO2 emissions and cumulative energy demand in the Brazilian Market. Construction and Building Materials, 2016, 114, 588-594.	3.2	24
43	Rapid method for measuring the water absorption of recycled aggregates. Materials and Structures/Materiaux Et Constructions, 2016, 49, 4069-4084.	1.3	12
44	Effect of silver nanoparticle and TiO2 coatings on biofilm formation on four types of modern glass. International Biodeterioration and Biodegradation, 2016, 108, 175-180.	1.9	15
45	The performance of a self-cleaning cool cementitious surface. Energy and Buildings, 2016, 114, 200-205.	3.1	22
46	The Bond Strength Behavior of Polymer-modified Mortars During a Wetting and Drying Process. Materials Research, 2015, 18, 1354-1361.	0.6	7
47	Relations among electrical resistivity, chemical and autogenous shrinkage of cement pastes. Advances in Cement Research, 2015, 27, 175-183.	0.7	11
48	Sheath Bamboo Leaves Used at High Pressure Architect. Key Engineering Materials, 2015, 668, 92-99.	0.4	0
49	Concrete Water Footprint Assessment Methodologies. Key Engineering Materials, 2015, 668, 247-254.	0.4	5
50	Susceptibility of biocalcite-modified fiber cement to biodeterioration. International Biodeterioration and Biodegradation, 2015, 103, 215-220.	1.9	8
51	Microbial colonization affects the efficiency of photovoltaic panels in a tropical environment. Journal of Environmental Management, 2015, 157, 160-167.	3.8	41
52	Effects of replacement of binder content on bond strength of mortars. Revista IBRACON De Estruturas E Materiais, 2015, 8, 66-87.	0.3	0
53	Estratégias para a minimização da emissão de CO2 de concretos. Ambiente ConstruÃdo, 2014, 14, 167-18	10.2	17
54	Pintura à base de cal como alternativa de revestimento frio. Ambiente ConstruÃdo, 2014, 14, 149-157.	0.2	3

#	Article	IF	CITATIONS
55	Caracterização reológica de suspensões cimentâias mistas com cales ou filitos. Ambiente ConstruÃdo, 2014, 14, 75-84.	0.2	7
56	Characterisation of rendering mortars by squeeze-flow and rotational rheometry. Cement and Concrete Research, 2014, 57, 79-87.	4.6	58
57	Energy and CO2 from high performance recycled aggregate production. Resources, Conservation and Recycling, 2014, 90, 21-33.	5.3	114
58	Mineralogical and microstructural changes promoted by accelerated carbonation and ageing cycles of hybrid fiber–cement composites. Construction and Building Materials, 2014, 68, 750-756.	3.2	60
59	Fungal and phototroph growth on fiber cement roofs and its influence on solar reflectance in a tropical climate. International Biodeterioration and Biodegradation, 2014, 95, 332-337.	1.9	13
60	Production of recycled sand from construction and demolition waste. Construction and Building Materials, 2013, 40, 1168-1173.	3.2	95
61	Lower binder intensity eco-efficient concretes. , 2013, , 26-44.		7
62	Modelagem simplificada para estimativa do potencial de penetração de partÃculas em substratos porosos. Ambiente ConstruÃdo, 2013, 13, 25-34.	0.2	1
63	Separação óptica do material cerâmico dos agregados mistos de resÃduos de construção e demolição. Ambiente ConstruÃdo, 2013, 13, 61-73.	0.2	9
64	Eco-efficient concrete. , 2013, , .		43
65	Use of Fine Fraction. RILEM State-of-the-Art Reports, 2013, , 195-227.	0.3	1
66	Prospects for the Use of Wood in Residential Construction in Brazil - First Results. Key Engineering Materials, 2012, 517, 247-260.	0.4	4
67	Effect of EVA on the fresh properties of cement paste. Cement and Concrete Composites, 2012, 34, 255-260.	4.6	78
68	Resistance of Cyanobacterial Fouling on Architectural Paint Films to Cleaning by Water Jet. Current Microbiology, 2012, 64, 312-316.	1.0	3
69	Effect of culture medium on biocalcification by Pseudomonas Putida, Lysinibacillus Sphaericus and Bacillus Subtilis. Brazilian Journal of Microbiology, 2011, 42, 499-507.	0.8	31
70	Sand bioconsolidation through the precipitation of calcium carbonate by two ureolytic bacteria. Materials Letters, 2011, 65, 1730-1733.	1.3	33
71	Discoloration and fungal growth on three fiber cement formulations exposed in urban, rural and coastal zones. Building and Environment, 2011, 46, 324-330.	3.0	22
72	The influence of moisture on the deformability of cement–polymer adhesive mortar. Construction and Building Materials, 2011, 25, 2948-2954.	3.2	33

#	Article	IF	CITATIONS
73	Biodeterioration of painted mortar surfaces in tropical urban and coastal situations: Comparison of four paint formulations. International Biodeterioration and Biodegradation, 2011, 65, 669-674.	1.9	39
74	Hybrid Reinforcement of Sisal and Polypropylene Fibers in Cement-Based Composites. Journal of Materials in Civil Engineering, 2011, 23, 177-187.	1.3	39
75	Effect of culture medium on biocalcification by Pseudomonas Putida, Lysinibacillus Sphaericus and Bacillus Subtilis. Brazilian Journal of Microbiology, 2011, 42, 499-507.	0.8	14
76	Emissão de CO2 do transporte da madeira nativa da Amazônia. Ambiente ConstruÃdo, 2011, 11, 157-172.	0.2	10
77	On the classification of mixed construction and demolition waste aggregate by porosity and its impact on the mechanical performance of concrete. Materials and Structures/Materiaux Et Constructions, 2010, 43, 519-528.	1.3	75
78	Climate as the most important factor determining anti-fungal biocide performance in paint films. Science of the Total Environment, 2010, 408, 5878-5886.	3.9	44
79	Estimating thermal performance of cool colored paints. Energy and Buildings, 2010, 42, 17-22.	3.1	181
80	Measuring the eco-efficiency of cement use. Cement and Concrete Composites, 2010, 32, 555-562.	4.6	450
81	Exploring the potential of functionally graded materials concept for the development of fiber cement. Construction and Building Materials, 2010, 24, 140-146.	3.2	78
82	Special Issue on Inorganic-bonded Fiber Composites. Construction and Building Materials, 2010, 24, 129.	3.2	9
83	Composição quÃmica de agregados mistos de resÃduos de construção e demolição do Estado de São Paulo. Revista Escola De Minas, 2010, 63, 339-346.	0.1	11
84	Mixture Screening Design to Choose Formulations for Functionally Graded Fiber Cements. Materials Science Forum, 2009, 631-632, 65-70.	0.3	1
85	Chemical–mineralogical characterization of C&D waste recycled aggregates from São Paulo, Brazil. Waste Management, 2009, 29, 721-730.	3.7	95
86	Carbide lime and industrial hydrated lime characterization. Powder Technology, 2009, 195, 143-149.	2.1	85
87	Effect of HMEC on the consolidation of cement pastes: Isothermal calorimetry versus oscillatory rheometry. Cement and Concrete Research, 2009, 39, 440-445.	4.6	75
88	Rheological behavior of mortars under different squeezing rates. Cement and Concrete Research, 2009, 39, 748-753.	4.6	61
89	Bond strength and transversal deformation aging on cement-polymer adhesive mortar. Construction and Building Materials, 2009, 23, 1022-1027.	3.2	39
90	Squeeze flow as a tool for developing optimized gypsum plasters. Construction and Building Materials, 2009, 23, 1349-1353.	3.2	19

#	Article	IF	CITATIONS
91	Influência do ligante na retração por secagem em fibrocimento. Ambiente ConstruÃdo, 2009, 9, 7-16.	0.2	3
92	Caracterização reológica de pasta cimentÃcia: associação de técnicas complementares. Ambiente ConstruÃdo, 2009, 9, 37-48.	0.2	14
93	Long-term aging of fiber-cement corrugated sheets – The effect of carbonation, leaching and acid rain. Cement and Concrete Composites, 2008, 30, 255-265.	4.6	52
94	The FGM Concept in the Development of Fiber Cement Components. AIP Conference Proceedings, 2008, ,	0.3	2
95	Influência da técnica de dispersão nas propriedades de sÃlica ativa. Ceramica, 2008, 54, 456-461.	0.3	8
96	Desenvolvimento de PVC reforçado com resÃduos de Pinus para substituir madeira convencional em diversas aplicações. Polimeros, 2006, 16, 1-11.	0.2	12
97	The effect of different mineral additions and synthetic fiber contents on properties of cement based composites. Cement and Concrete Composites, 2006, 28, 555-563.	4.6	43
98	Developments on vegetable fibre–cement based materials in São Paulo, Brazil: an overview. Cement and Concrete Composites, 2005, 27, 527-536.	4.6	255
99	Durability of slag mortar reinforced with coconut fibre. Cement and Concrete Composites, 2005, 27, 565-574.	4.6	108
100	Mould and phototroph growth on masonry façades after repainting. Materials and Structures/Materiaux Et Constructions, 2004, 37, 472-479.	1.3	15
101	Statistical analysis of fungicide activity in paint films on two buildings. Surface Coatings International Part B: Coatings Transactions, 2004, 87, 261-264.	0.3	5
102	Mould and phototroph growth on masonry façades after repainting. Materials and Structures/Materiaux Et Constructions, 2004, 37, 472-479.	1.3	6
103	Weathering of vegetable fibre-clinker free cement composites. Materials and Structures/Materiaux Et Constructions, 2002, 35, 64-68.	1.3	10
104	Fungal colonization and succession on newly painted buildings and the effect of biocide. FEMS Microbiology Ecology, 2002, 39, 165-173.	1.3	100
105	Pore size distribution of hydrated cement pastes modified with polymers. Cement and Concrete Research, 2001, 31, 1177-1184.	4.6	164
106	Research & development methodology for recycling residues as building materials— a proposal. Waste Management, 2001, 21, 213-219.	3.7	36
107	Durability evaluation of vegetable fibre reinforced materials. Building Research and Information, 1992, 20, 233-235.	2.0	35
108	Thermo-Mechanical Treatment to Improve Properties of Sisal Fibres for Composites. Materials Science Forum, 0, 636-637, 253-259.	0.3	11

#	Article	IF	CITATIONS
109	Developing Low CO ₂ Concretes: Is Clinker Replacement Sufficient? The Need of Cement Use Efficiency Improvement. Key Engineering Materials, 0, 517, 342-351.	0.4	21
110	Application of fracture mechanics for the characterization of poly(vinyl chloride) pipes. II . Evaluation of a ringâ€ŧype specimen for fracture mechanics testing. Journal of Vinyl and Additive Technology, 0, , .	1.8	2
111	SEPARABILIDADE DE AGREGADOS RECICLADOS PROVENIENTES DE RESÃDUOS DE CONSTRUÇÃO E DEMOLIÇÃO DE DIFERENTES ORIGENS. Holos, 0, 3, 341.	0.0	Ο