Haiwei Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2676285/publications.pdf

Version: 2024-02-01

933264 940416 22 280 10 16 citations h-index g-index papers 22 22 22 246 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Engineering His-Tagged Senecavirus A for One-Step Purification of Viral Antigens. Vaccines, 2022, 10, 170.	2.1	5
2	Senecavirus A as an Oncolytic Virus: Prospects, Challenges and Development Directions. Frontiers in Oncology, 2022, 12, 839536.	1.3	9
3	Senecavirus A Entry Into Host Cells Is Dependent on the Cholesterol-Mediated Endocytic Pathway. Frontiers in Veterinary Science, 2022, 9, 840655.	0.9	4
4	The Stem-Loop I of Senecavirus A IRES Is Essential for Cap-Independent Translation Activity and Virus Recovery. Viruses, 2021, 13, 2159.	1.5	1
5	Polymerase Fidelity Contributes to Foot-and-Mouth Disease Virus Pathogenicity and Transmissibility <i>In Vivo</i> . Journal of Virology, 2020, 95, .	1.5	4
6	A Temperature-Dependent Translation Defect Caused by Internal Ribosome Entry Site Mutation Attenuates Foot-and-Mouth Disease Virus: Implications for Rational Vaccine Design. Journal of Virology, 2020, 94, .	1.5	5
7	hnRNP K Is a Novel Internal Ribosomal Entry Site-Transacting Factor That Negatively Regulates Foot-and-Mouth Disease Virus Translation and Replication and Is Antagonized by Viral 3C Protease. Journal of Virology, 2020, 94, .	1.5	28
8	Heterogeneous Nuclear Ribonucleoprotein L Negatively Regulates Foot-and-Mouth Disease Virus Replication through Inhibition of Viral RNA Synthesis by Interacting with the Internal Ribosome Entry Site in the 5′ Untranslated Region. Journal of Virology, 2020, 94, .	1.5	15
9	Senecavirus-Specific Recombination Assays Reveal the Intimate Link between Polymerase Fidelity and RNA Recombination. Journal of Virology, 2019, 93, .	1.5	32
10	Identification of a conserved linear epitope using monoclonal antibody against non-structural protein 3A of foot-and-mouth disease virus with potential for differentiation between infected and vaccinated animals. Research in Veterinary Science, 2019, 124, 178-185.	0.9	5
11	Foot-and-mouth disease virus type O specific mutations determine RNA-dependent RNA polymerase fidelity and virus attenuation. Virology, 2018, 518, 87-94.	1.1	15
12	Identification of a conserved conformational epitope in the VP2 protein of foot-and-mouth disease virus. Archives of Virology, 2017, 162, 1877-1885.	0.9	13
13	T135I substitution in the nonstructural protein 2C enhances foot-and-mouth disease virus replication. Virus Genes, 2017, 53, 840-847.	0.7	6
14	Identification of a serotype-independent linear epitope of foot-and-mouth disease virus. Archives of Virology, 2017, 162, 3875-3880.	0.9	4
15	Identification of a conformational neutralizing epitope on the VP1 protein of type A foot-and-mouth disease virus. Research in Veterinary Science, 2017, 115, 374-381.	0.9	10
16	Complete genome sequence and phylogenetic analysis of Senecavirus A isolated in Northeast China in 2016. Archives of Virology, 2017, 162, 3173-3176.	0.9	38
17	Identification of a conserved linear neutralizing epitope recognized by monoclonal antibody 9A9 against serotype A foot-and-mouth disease virus. Archives of Virology, 2016, 161, 2705-2716.	0.9	8
18	Identification of a conserved linear epitope using a monoclonal antibody against non-structural protein 3B of foot-and-mouth disease virus. Archives of Virology, 2016, 161, 365-375.	0.9	7

#	Article	IF	CITATION
19	Modification of the internal ribosome entry site element impairs the growth of foot-and-mouth disease virus in porcine-derived cells. Journal of General Virology, 2016, 97, 901-911.	1.3	10
20	Single amino acid substitution of VP1 N17D or VP2 H145Y confers acid-resistant phenotype of type Asia1 foot-and-mouth disease virus. Virologica Sinica, 2014, 29, 103-111.	1.2	16
21	Insertion of type O-conserved neutralizing epitope into the foot-and-mouth disease virus type Asia1 VP1 G-H loop: effect on viral replication and neutralization phenotype. Journal of General Virology, 2012, 93, 1442-1448.	1.3	15
22	Identification of a conformational epitope on the VP1 G-H Loop of type Asia1 foot-and-mouth disease virus defined by a protective monoclonal antibody. Veterinary Microbiology, 2011, 148, 189-199.	0.8	30