Pengtao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2676077/publications.pdf

Version: 2024-02-01

51	970	16	29
papers	citations	h-index	g-index
51	51	51	576 citing authors
all docs	docs citations	times ranked	

#	Article	IF	Citations
1	Carboxylate covalently modified polyoxometalates: From synthesis, structural diversity to applications. Coordination Chemistry Reviews, 2019, 378, 281-309.	18.8	205
2	Recent advances in transition-metal-containing Keggin-type polyoxometalate-based coordination polymers. Coordination Chemistry Reviews, 2019, 392, 49-80.	18.8	133
3	Elucidating white light emissions in Tm ³⁺ /Dy ³⁺ codoped polyoxometalates: a color tuning and energy transfer mechanism study. Dalton Transactions, 2018, 47, 13949-13956.	3.3	32
4	A Polyoxometalate-Based Inorganic Porous Material with both Proton and Electron Conductivity by Light Actuation: Photocatalysis for Baeyer–Villiger Oxidation and Cr(VI) Reduction. Inorganic Chemistry, 2021, 60, 682-691.	4.0	32
5	A Copper-Containing Polyoxometalate-Based Metal–Organic Framework as an Efficient Catalyst for Selective Catalytic Oxidation of Alkylbenzenes. Inorganic Chemistry, 2021, 60, 4792-4799.	4.0	32
6	An organic chromophore -modified samarium-containing polyoxometalate: excitation-dependent color tunable behavior from the organic chromophores to the lanthanide ion. Dalton Transactions, 2020, 49, 388-394.	3.3	28
7	dl-Serine covalently modified multinuclear lanthanide-implanted arsenotungstates with fast photochromism. Chinese Chemical Letters, 2023, 34, 107238.	9.0	27
8	An isotetramolybdate-supported rhenium carbonyl derivative: synthesis, characterization, and use as a catalyst for sulfoxidation. Dalton Transactions, 2018, 47, 5279-5285.	3.3	23
9	A binuclear copper-substituted phosphomolybdate with reactive oxygen species catalytic ability and antimicrobial activity. CrystEngComm, 2019, 21, 394-398.	2.6	20
10	Regulating the catalytic activity of multi-Ru-bridged polyoxometalates based on differential active site environments with six-coordinate geometry and five-coordinate geometry transitions. Nanoscale, 2021, 13, 8077-8086.	5.6	20
11	Improving the single-molecule magnet properties of two pentagonal bipyramidal Dy ³⁺ compounds by the introduction of both electron-withdrawing and -donating groups. Dalton Transactions, 2021, 50, 12607-12618.	3.3	19
12	Synthesis, characterization, and photoluminescence properties of three two-dimensional lanthanide-containing Dawson-type polyoxometalates. Dalton Transactions, 2019, 48, 13850-13857.	3.3	18
13	Utilizing the adaptive precursor [As ₂ W ₁₉ O ₆₇ (H ₂ O)] ^{14–} to support three hexanuclear lanthanoid-based tungstoarsenate dimers. Dalton Transactions, 2019, 48, 2813-2821.	3.3	18
14	Two synthetic routes generate two isopolyoxoniobates based on {Nb ₁₆ } and {Nb ₂₀ }. Dalton Transactions, 2019, 48, 17709-17712.	3.3	18
15	Polyoxovanadate catalysts for oxidation of 1-phenyl ethanol: from the discrete [V ₄ O ₁₂ (sub>4a^' and [V ₁₀ O ₂₈ (sub>) _{6a^' anions to the anionic [V₆O₁₇ _n^{4nâ''} coordination polymer. CrystEngComm. 2018. 20. 6273-6279.}	2.6	17
16	A nano-linear zinc-substituted phosphomolybdate with reactive oxygen species catalytic ability and antibacterial activity. Journal of Molecular Structure, 2019, 1198, 126865.	3.6	17
17	Well-tuned white-light-emitting behaviours in multicenter-Ln polyoxometalate derivatives: A photoluminescence property and energy transfer pathway study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 223, 117294.	3.9	17
18	Temperature-induced structural transformations accompanied by changes in magnetic properties of two copper coordination polymers. CrystEngComm, 2020, 22, 3482-3488.	2.6	17

#	Article	IF	Citations
19	Recent advances in rare earth co-doped luminescent tungsten oxygen complexes. Inorganic Chemistry Frontiers, 2021, 8, 4158-4176.	6.0	17
20	Trinuclear ruthenium core-containing polyoxometalate-based hybrids: preparation, characterization and catalytic behavior. Dalton Transactions, 2020, 49, 2895-2904.	3.3	17
21	Synthesis, characterization and catalytic epoxidation properties of a new tellurotungstate(<scp>iv</scp>)-supported rhenium carbonyl derivative. Dalton Transactions, 2019, 48, 628-634.	3.3	16
22	A silver-substituted phosphomolybdate prevents the growth of bacteria without affecting the balance of reactive oxygen species. CrystEngComm, 2020, 22, 7832-7837.	2.6	16
23	Pyrazine dicarboxylate-bridged arsenotungstate: synthesis, characterization, and catalytic activities in epoxidation of olefins and oxidation of alcohols. Dalton Transactions, 2019, 48, 12956-12963.	3.3	15
24	Preparation, characterization, and catalytic performances of a pyrazine dicarboxylate-bridging rare-earth-containing polytungstoarsenate aggregate for selective oxidation of thiophenes and deep desulfurization of model fuels. Dalton Transactions, 2018, 47, 9677-9684.	3.3	14
25	Discovery of two Na ⁺ -centered Silverton-type polyoxometalates {NaM ₁₂ O ₄₂ } (M = Mo, W). Chemical Communications, 2021, 57, 2172-2175.	4.1	14
26	Synthesis and characterization of a Sb($\langle scp \rangle v \langle scp \rangle$)-containing polyoxomolybdate serving as a catalyst for sulfoxidation. Dalton Transactions, 2018, 47, 8070-8077.	3.3	13
27	Magnetic field and dilution effects on the slow relaxation of {Er ₃ } triangle-based arsenotungstate single-molecule magnets. Dalton Transactions, 2020, 49, 12458-12465.	3.3	13
28	A hybrid silicotungstate based on tri-coordination copper complex and Keggin type cluster with reactive oxygen species catalytic ability. Journal of Molecular Structure, 2020, 1206, 127714.	3.6	13
29	A new dimeric polyoxometalate derivate assembled by divacant Dawson {P2W16} units and isosceles triangle {Ce3} cluster. Inorganic Chemistry Communication, 2018, 95, 154-157.	3.9	10
30	A novel peroxopolyoxoniobate incorporating mixed heteroatoms: [P ₂ Se ₂ Nb ₆ (O ₂) ₆ O ₂₂] ^{8â^'< Dalton Transactions, 2019, 48, 13135-13138.}	:/sa ₁ 3>.	9
31	Preparation, characterization and electrocatalysis performance of a trimeric ruthenium-substituted isopolytungstate. Dalton Transactions, 2019, 48, 10327-10336.	3.3	9
32	H-shaped oxalate-bridging lanthanoid-incorporated arsenotungstates. Dalton Transactions, 2020, 49, 15731-15738.	3.3	9
33	Selenotungstates incorporating organophosphonate ligands and metal ions: synthesis, characterization, magnetism and catalytic efficiency in the Knoevenagel condensation reaction. Dalton Transactions, 2020, 49, 7420-7425.	3.3	8
34	Synthesis, structures and stability of three V-substituted polyoxoniobate clusters based on [TeNb ₉ O ₃₃] ^{17â^2} units. Dalton Transactions, 2021, 50, 7610-7620.	3.3	8
35	A Rh-substituted polyoxometalate with an acetate-modified building block {As ₂ W ₂₂ O ₇₆ (CH ₃ COO) ₂ }. Chemical Communications, 2021, 57, 10250-10253.	4.1	8
36	Oxalate-bridging Nd ^{III} -based arsenotungstate with multifunctional NIR-luminescence and magnetic properties. Dalton Transactions, 2022, 51, 10257-10265.	3.3	8

#	Article	IF	Citations
37	A propionate-functionalized polyoxovanadate K2[V10O16(OH)6(CH3CH2CO2)6]·20H2O: As catalyst for degradation of methylene blue. Journal of Molecular Structure, 2019, 1195, 184-188.	3.6	7
38	A new 2-D layer-like organic-inorganic hybrid tungstobismuthate constructed from [Bi2W20O70]14â^' units and dimeric [Cu2(dien)2]24+ complex cations. Journal of Molecular Structure, 2019, 1181, 142-147.	3.6	6
39	Discovery of the selenotantalate building block and its lanthanide derivatives: design, synthesis, and RhB decolorization properties. Dalton Transactions, 2020, 49, 4078-4083.	3.3	6
40	Facile and green synthesis of decatungstate-based nickel(<scp>ii</scp>) complex coated onto modified Fe ₃ O ₄ nanoparticles with enhanced antimicrobial activity against antibiotic-resistant bacteria. CrystEngComm, 2021, 23, 3919-3928.	2.6	6
41	Ln(iii)-Containing polyoxomolybdates based on \hat{l}^2 -{Mo8O28}: microwave synthesis and optical and magnetic properties. CrystEngComm, 2019, 21, 3627-3633.	2.6	5
42	Ru(<scp>iii</scp>) -based polyoxometalate tetramers as highly efficient heterogeneous catalysts for alcohol oxidation reactions at room temperature. Dalton Transactions, 2021, 50, 12664-12673.	3.3	5
43	A comprehensive approach providing a new synthetic route for bimetallic electrocatalysts $\langle i \rangle = A \cos(h) + A \cos$	3.3	4
44	A large copper-niobate cluster with the pagoda-shaped subunit {Nb ₂₀ O ₅₉ }. Chemical Communications, 2021, 57, 3999-4002.	4.1	4
45	Organic–inorganic one-dimensional hybrid aggregates constructed from aromatic-bisphosphonate-functionalized polyoxomolybdates. Dalton Transactions, 2022, , .	3.3	4
46	A novel organic-inorganic hybrid polyoxometalate-based 3D framework constructed by organo-functionalized [As2W21O72(mal)2]18â° units and Ce3+ ions. Inorganic Chemistry Communication, 2017, 83, 84-87.	3.9	3
47	A new phosphotungstate-supported rhenium carbonyl derivative: synthesis, characterization and catalytic selective oxidation of thiophenes. CrystEngComm, 2019, 21, 7322-7328.	2.6	3
48	Synthesis, characterization and photoluminescence properties of an organic–inorganic hybrid monolacunary Keggin-type polyoxotungstate. Inorganic Chemistry Communication, 2021, 129, 108621.	3.9	3
49	A Nonclassical Polyoxoanion [P ₃ W ₆ (O ₂) ₆ (OH) ₂ O ₂₂] ^{7†Constructed by Two {PW₃(O₂)₃(OH)O₉} Subunits and a {PO₄} Group, European lournal of Inorganic Chemistry, 2019, 2019, 523-528.}	:"	2
50	An unprecedented [{Fe5O5(OH)2(OAc)2}2{W2O2(OH)}] cluster sandwiched in the tetravacant tungstophosphate. Dalton Transactions, 2019, 48, 16857-16860.	3.3	2
51	The photoluminescence study of an organic–inorganic hybrid Keggin-type polyoxotungstate: A better excitation efficiency between polyoxometalate and thulium. Inorganic Chemistry Communication, 2022, 143, 109718.	3.9	0