
Ulrike C Müller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2675787/publications.pdf Version: 2024-02-01

HIDIKE C MÃ1/11ED

#	Article	IF	CITATIONS
1	Not just amyloid: physiological functions of the amyloid precursor protein family. Nature Reviews Neuroscience, 2017, 18, 281-298.	4.9	434
2	Mice with Combined Gene Knock-Outs Reveal Essential and Partially Redundant Functions of Amyloid Precursor Protein Family Members. Journal of Neuroscience, 2000, 20, 7951-7963.	1.7	430
3	Tumour-cell-induced endothelial cell necroptosis via death receptor 6 promotes metastasis. Nature, 2016, 536, 215-218.	13.7	411
4	Regulation of cholesterol and sphingomyelin metabolism by amyloid-β and presenilin. Nature Cell Biology, 2005, 7, 1118-1123.	4.6	404
5	The Secreted β-Amyloid Precursor Protein Ectodomain APPsα Is Sufficient to Rescue the Anatomical, Behavioral, and Electrophysiological Abnormalities of APP-Deficient Mice. Journal of Neuroscience, 2007, 27, 7817-7826.	1.7	334
6	Presenilin-Dependent Transcriptional Control of the Aβ-Degrading Enzyme Neprilysin by Intracellular Domains of βAPP and APLP. Neuron, 2005, 46, 541-554.	3.8	317
7	ÎSecretase processing of APP inhibits neuronal activity in the hippocampus. Nature, 2015, 526, 443-447.	13.7	308
8	Soluble form of amyloid precursor protein regulates proliferation of progenitors in the adult subventricular zone. Development (Cambridge), 2004, 131, 2173-2181.	1.2	303
9	Cortical dysplasia resembling human type 2 lissencephaly in mice lacking all three APP family members. EMBO Journal, 2004, 23, 4106-4115.	3.5	291
10	Homo- and heterodimerization of APP family members promotes intercellular adhesion. EMBO Journal, 2005, 24, 3624-3634.	3.5	263
11	A physiologic signaling role for the Â-secretase-derived intracellular fragment of APP. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 4697-4702.	3.3	261
12	Physiological Functions of APP Family Proteins. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a006288-a006288.	2.9	237
13	Regulated intramembrane proteolysis of amyloid precursor protein and regulation of expression of putative target genes. EMBO Reports, 2006, 7, 739-745.	2.0	174
14	APP and APLP2 are essential at PNS and CNS synapses for transmission, spatial learning and LTP. EMBO Journal, 2011, 30, 2266-2280.	3.5	157
15	Acute function of secreted amyloid precursor protein fragment APPsα in synaptic plasticity. Acta Neuropathologica, 2015, 129, 21-37.	3.9	149
16	Viral gene transfer of APPsα rescues synaptic failure in an Alzheimer's disease mouse model. Acta Neuropathologica, 2016, 131, 247-266.	3.9	131
17	Systematic substrate identification indicates a central role for the metalloprotease ADAM10 in axon targeting and synapse function. ELife, 2016, 5, .	2.8	124
18	APP Anterograde Transport Requires Rab3A GTPase Activity for Assembly of the Transport Vesicle. Journal of Neuroscience, 2009, 29, 14534-14544.	1.7	106

Ulrike C Müller

#	Article	IF	CITATIONS
19	Hypersensitivity to seizures in β-amyloid precursor protein deficient mice. Cell Death and Differentiation, 1998, 5, 858-866.	5.0	104
20	Activity requires soluble amyloid precursor protein α to promote neurite outgrowth in neural stem cellâ€derived neurons via activation of the MAPK pathway. European Journal of Neuroscience, 2008, 28, 871-882.	1.2	97
21	Functions of the APP gene family in the nervous system: insights from mouse models. Experimental Brain Research, 2012, 217, 423-434.	0.7	93
22	Impaired theta-gamma coupling in APP-deficient mice. Scientific Reports, 2016, 6, 21948.	1.6	92
23	Therapeutic Potential of Secreted Amyloid Precursor Protein APPsα. Frontiers in Molecular Neuroscience, 2017, 10, 30.	1.4	91
24	Comparative analysis of single and combined APP/APLP knockouts reveals reduced spine density in APP-KO mice that is prevented by APPsα expression. Acta Neuropathologica Communications, 2014, 2, 36.	2.4	81
25	Amyloid precursor proteins are constituents of the presynaptic active zone. Journal of Neurochemistry, 2013, 127, 48-56.	2.1	69
26	The APP Intracellular Domain Is Required for Normal Synaptic Morphology, Synaptic Plasticity, and Hippocampus-Dependent Behavior. Journal of Neuroscience, 2015, 35, 16018-16033.	1.7	67
27	sAPPα antagonizes dendritic degeneration and neuron death triggered by proteasomal stress. Molecular and Cellular Neurosciences, 2010, 44, 386-393.	1.0	62
28	Distinct <i>inÂvivo</i> roles of secreted <scp>APP</scp> ectodomain variants <scp>APP</scp> sl̂± and <scp>APP</scp> sl̂² in regulation of spine density, synaptic plasticity, and cognition. EMBO Journal, 2018, 37, .	3.5	62
29	Dysregulated ADAM10-Mediated Processing of APP during a Critical Time Window Leads to Synaptic Deficits in Fragile X Syndrome. Neuron, 2015, 87, 382-398.	3.8	59
30	The Functions of Mammalian Amyloid Precursor Protein and Related Amyloid Precursor-Like Proteins. Neurodegenerative Diseases, 2006, 3, 239-246.	0.8	57
31	APLP1 Is a Synaptic Cell Adhesion Molecule, Supporting Maintenance of Dendritic Spines and Basal Synaptic Transmission. Journal of Neuroscience, 2017, 37, 5345-5365.	1.7	55
32	APP intracellular domain derived from amyloidogenic β- and γ-secretase cleavage regulates neprilysin expression. Frontiers in Aging Neuroscience, 2015, 7, 77.	1.7	53
33	Roles of the amyloid precursor protein family in the peripheral nervous system. Mechanisms of Development, 2013, 130, 433-446.	1.7	48
34	Amyloid precursor protein maintains constitutive and adaptive plasticity of dendritic spines in adult brain by regulating Dâ€serine homeostasis. EMBO Journal, 2016, 35, 2213-2222.	3.5	46
35	Upregulation of <scp>PGC</scp> â€lα expression by <scp>A</scp> lzheimer's diseaseâ€associated pathway: presenilin 1/amyloid precursor protein (<scp>APP</scp>)/intracellular domain of <scp>APP</scp> . Aging Cell, 2014, 13, 263-272.	3.0	45
36	APLP2 regulates neuronal stem cell differentiation during cortical development. Journal of Cell Science, 2013, 126, 1268-1277.	1.2	44

Ulrike C Müller

#	Article	IF	CITATIONS
37	Differential role of APP and APLPs for neuromuscular synaptic morphology and function. Molecular and Cellular Neurosciences, 2014, 61, 201-210.	1.0	44
38	Presenilin-mediated cleavage of APP regulates synaptotagmin-7 and presynaptic plasticity. Nature Communications, 2018, 9, 4780.	5.8	44
39	Embryonic Stem Cell-Derived Neurons as a Cellular System to Study Gene Function: Lack of Amyloid Precursor Proteins APP and APLP2 Leads to Defective Synaptic Transmission. Stem Cells, 2008, 26, 2153-2163.	1.4	43
40	Comparative transcriptome profiling of amyloid precursor protein family members in the adult cortex. BMC Genomics, 2011, 12, 160.	1.2	39
41	Amyloid Precursor Protein Protects Neuronal Network Function after Hypoxia via Control of Voltage-Gated Calcium Channels. Journal of Neuroscience, 2016, 36, 8356-8371.	1.7	37
42	Neurons Generated from APP/APLP1/APLP2 Triple Knockout Embryonic Stem Cells Behave Normally in Vitro and in Vivo: Lack of Evidence for a Cell Autonomous Role of the Amyloid Precursor Protein in Neuronal Differentiation. Stem Cells, 2010, 28, 399-406.	1.4	35
43	Inactivation of γâ€secretases leads to accumulation of substrates and nonâ€Alzheimer neurodegeneration. EMBO Molecular Medicine, 2017, 9, 1088-1099.	3.3	35
44	Click Chemistry-mediated Biotinylation Reveals a Function for the Protease BACE1 in Modulating the Neuronal Surface Glycoproteome. Molecular and Cellular Proteomics, 2018, 17, 1487-1501.	2.5	33
45	Loss of all three APP family members during development impairs synaptic function and plasticity, disrupts learning, and causes an autismâ€like phenotype. EMBO Journal, 2021, 40, e107471.	3.5	27
46	Contribution of GABAergic interneurons to amyloid- \hat{l}^2 plaque pathology in an APP knock-in mouse model. Molecular Neurodegeneration, 2020, 15, 3.	4.4	26
47	Amyloid-Beta Mediates Homeostatic Synaptic Plasticity. Journal of Neuroscience, 2021, 41, 5157-5172.	1.7	26
48	Region-Specific Differences in Amyloid Precursor Protein Expression in the Mouse Hippocampus. Frontiers in Molecular Neuroscience, 2016, 9, 134.	1.4	25
49	Generation of conditional null alleles for <i>APP</i> and <i>APLP2</i> . Genesis, 2010, 48, 200-206.	0.8	24
50	APP Is a Context-Sensitive Regulator of the Hippocampal Presynaptic Active Zone. PLoS Computational Biology, 2016, 12, e1004832.	1.5	22
51	Hippocampal Network Oscillations in APP/APLP2-Deficient Mice. PLoS ONE, 2013, 8, e61198.	1.1	18
52	In vivo Ca 2+ imaging of astrocytic microdomains reveals a critical role of the amyloid precursor protein for mitochondria. Glia, 2019, 67, 985-998.	2.5	15
53	Deletion of the amyloid precursorâ€like protein 1 (APLP1) enhances excitatory synaptic transmission, reduces network inhibition but does not impair synaptic plasticity in the mouse dentate gyrus. Journal of Comparative Neurology, 2015, 523, 1717-1729.	0.9	14
54	Lack of APP and APLP2 in GABAergic Forebrain Neurons Impairs Synaptic Plasticity and Cognition. Cerebral Cortex, 2020, 30, 4044-4063.	1.6	14

#	Article	IF	CITATIONS
55	APP Deletion Accounts for Age-Dependent Changes in the Bioenergetic Metabolism and in Hyperphosphorylated CaMKII at Stimulated Hippocampal Presynaptic Active Zones. Frontiers in Synaptic Neuroscience, 2017, 9, 1.	1.3	12
56	APPsα rescues impaired Ca ²⁺ homeostasis in APP- and APLP2-deficient hippocampal neurons. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	8
57	Regulatory feedback cycle of the insulinâ€degrading enzyme and the amyloid precursor protein intracellular domain: Implications for Alzheimer's disease. Aging Cell, 2020, 19, e13264.	3.0	7
58	Choroid plexus APP regulates adult brain proliferation and animal behavior. Life Science Alliance, 2021, 4, e202000703.	1.3	7
59	Modulation of BAG3 Expression and Proteasomal Activity by sAPPα Does Not Require Membrane-Tethered Holo-APP. Molecular Neurobiology, 2016, 53, 5985-5994.	1.9	6
60	Amyloid-precursor Like Proteins APLP1 and APLP2 Are Dispensable for Normal Development of the Neonatal Respiratory Network. Frontiers in Molecular Neuroscience, 2017, 10, 189.	1.4	5
61	Editorial: The Physiological Functions of the APP Gene Family. Frontiers in Molecular Neuroscience, 2017, 10, 334.	1.4	5
62	Carboxy-terminal fragment of amyloid precursor protein mediates lipid droplet accumulation upon Î ³ -secretase inhibition. Biochemical and Biophysical Research Communications, 2021, 570, 137-142.	1.0	3
63	P3â€151: GAMMAâ€SECRETASE INHIBITION INDUCES LIPID DROPLET ACCUMULATION VIA APP TF ACCUMUI Alzheimer's and Dementia, 2018, 14, P1126.	_ATIQN.	0