Shengmin Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2675618/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Selective laser sintering scaffold with hierarchical architecture and gradient composition for osteochondral repair in rabbits. Biomaterials, 2017, 137, 37-48.	11.4	246
2	Polymeric Systems for Bioprinting. Chemical Reviews, 2020, 120, 10744-10792.	47.7	161
3	Hierarchically designed bone scaffolds: From internal cues to external stimuli. Biomaterials, 2019, 218, 119334.	11.4	157
4	Progenitor cell-derived exosomes endowed with VEGF plasmids enhance osteogenic induction and vascular remodeling in large segmental bone defects. Theranostics, 2021, 11, 397-409.	10.0	111
5	Selenium-substituted hydroxyapatite nanoparticles and their in vivo antitumor effect on hepatocellular carcinoma. Colloids and Surfaces B: Biointerfaces, 2016, 140, 297-306.	5.0	84
6	Green Gas-Mediated Cross-Linking Generates Biomolecular Hydrogels with Enhanced Strength and Excellent Hemostasis for Wound Healing. ACS Applied Materials & Interfaces, 2020, 12, 13622-13633.	8.0	76
7	Microsphere-based selective laser sintering for building macroporous bone scaffolds with controlled microstructure and excellent biocompatibility. Colloids and Surfaces B: Biointerfaces, 2015, 135, 81-89.	5.0	74
8	Preparation and characterization of selenite substituted hydroxyapatite. Materials Science and Engineering C, 2013, 33, 440-445.	7.3	73
9	Biomimetic self-assembly of apatite hybrid materials: From a single molecular template to bi-/multi-molecular templates. Biotechnology Advances, 2014, 32, 744-760.	11.7	71
10	Zn/Sr dual ions-collagen co-assembly hydroxyapatite enhances bone regeneration through procedural osteo-immunomodulation and osteogenesis. Bioactive Materials, 2022, 10, 195-206.	15.6	67
11	Bioinspired membrane provides periosteum-mimetic microenvironment for accelerating vascularized bone regeneration. Biomaterials, 2021, 268, 120561.	11.4	60
12	Exosome-mimetics as an engineered gene-activated matrix induces in-situ vascularized osteogenesis. Biomaterials, 2020, 247, 119985.	11.4	56
13	Research trends in biomimetic medical materials for tissue engineering: 3D bioprinting, surface modification, nano/micro-technology and clinical aspects in tissue engineering of cartilage and bone. Biomaterials Research, 2016, 20, 10.	6.9	54
14	Injectable bone cement with magnesium-containing microspheres enhances osteogenesis via anti-inflammatory immunoregulation. Bioactive Materials, 2021, 6, 3411-3423.	15.6	49
15	Hierarchically constructed selenium-doped bone-mimetic nanoparticles promote ROS-mediated autophagy and apoptosis for bone tumor inhibition. Biomaterials, 2020, 257, 120253.	11.4	47
16	High Flexible and Broad Antibacterial Nanodressing Induces Complete Skin Repair with Angiogenic and Follicle Regeneration. Advanced Healthcare Materials, 2020, 9, e2000035.	7.6	45
17	Bioenergetic-active materials enhance tissue regeneration by modulating cellular metabolic state. Science Advances, 2020, 6, eaay7608.	10.3	44
18	Electrophoretic deposition of zinc-substituted hydroxyapatite coatings. Materials Science and Engineering C, 2014, 39, 67-72.	7.3	43

SHENGMIN ZHANG

#	Article	IF	CITATIONS
19	Delivering Proangiogenic Factors from 3Dâ€Printed Polycaprolactone Scaffolds for Vascularized Bone Regeneration. Advanced Healthcare Materials, 2020, 9, e2000727.	7.6	42
20	Preparation and mechanical properties of poly(chitosanâ€≺i>gâ€≺scp>DLâ€lactic acid) fibrous mesh scaffolds. Polymers for Advanced Technologies, 2008, 19, 114-123.	3.2	36
21	Chimeric Protein Template-Induced Shape Control of Bone Mineral Nanoparticles and Its Impact on Mesenchymal Stem Cell Fate. Biomacromolecules, 2015, 16, 1987-1996.	5.4	36
22	Mechanical Properties of Porous Polylactide/Chitosan Blend Membranes. Macromolecular Materials and Engineering, 2007, 292, 598-607.	3.6	34
23	Bio-inspired hybrid nanoparticles promote vascularized bone regeneration in a morphology-dependent manner. Nanoscale, 2017, 9, 5794-5805.	5.6	33
24	Seleniteâ€Releasing Bone Mineral Nanoparticles Retard Bone Tumor Growth and Improve Healthy Tissue Functions In Vivo. Advanced Healthcare Materials, 2015, 4, 1813-1818.	7.6	28
25	Remodeling of inherent antimicrobial nanofiber dressings with melamine-modified fibroin into neoskin. Journal of Materials Chemistry B, 2019, 7, 3412-3423.	5.8	28
26	Lysozyme loading and release from Se doped hydroxyapatite nanoparticles. Materials Science and Engineering C, 2016, 61, 545-552.	7.3	22
27	Untangling the co-effects of oriented nanotopography and sustained anticoagulation in a biomimetic intima on neovessel remodeling. Biomaterials, 2020, 231, 119654.	11.4	20
28	Integrated polycaprolactone microsphere-based scaffolds with biomimetic hierarchy and tunable vascularization for osteochondral repair. Acta Biomaterialia, 2022, 141, 190-197.	8.3	20
29	Biomimetic Coprecipitation of Silk Fibrin and Calcium Phosphate: Influence of Selenite Ions. Biological Trace Element Research, 2017, 178, 338-347.	3.5	19
30	A high-strength biodegradable thermoset polymer for internal fixation bone screws: Preparation, in vitro and in vivo evaluation. Colloids and Surfaces B: Biointerfaces, 2019, 183, 110445.	5.0	19
31	Bioactive Molecules Release and Cellular Responses of Alginate-Tricalcium Phosphate Particles Hybrid Gel. Nanomaterials, 2017, 7, 389.	4.1	18
32	Repair of rat calvarial defects using Siâ€doped hydroxyapatite scaffolds loaded with a bone morphogenetic proteinâ€2â€related peptide. Journal of Orthopaedic Research, 2016, 34, 1874-1882.	2.3	17
33	Enhanced effect of nano-monetite hydrosol on dentin remineralization and tubule occlusion. Dental Materials, 2020, 36, 816-825.	3.5	13
34	Preparation, Characterization, and In Vitro Cytotoxicity Evaluation of a Novel Anti-Tuberculosis Reconstruction Implant. PLoS ONE, 2014, 9, e94937.	2.5	12
35	Functionalized Polycaprolactone/Hydroxyapatite Composite Microspheres for Promoting Bone Consolidation in a Rat Distraction Osteogenesis Model. Journal of Orthopaedic Research, 2020, 38, 961-971.	2.3	10
36	Synthesis and thermal stability of selenium-doped hydroxyapatite with different substitutions. Frontiers of Materials Science, 2015, 9, 392-396.	2.2	9

SHENGMIN ZHANG

#	Article	IF	CITATIONS
37	Assembly Mechanism of Highly Crystalline Selenium-Doped Hydroxyapatite Nanorods via Particle Attachment and Their Effect on the Fate of Stem Cells. ACS Biomaterials Science and Engineering, 2019, 5, 6703-6714.	5.2	9
38	Research trends in biomimetic medical materials for tissue engineering: commentary. Biomaterials Research, 2016, 20, 8.	6.9	7
39	Si-doping bone composite based on protein template-mediated assembly for enhancing bone regeneration. Frontiers of Materials Science, 2017, 11, 106-119.	2.2	5
40	Albumin-assembled copper-bismuth bimetallic sulfide bioactive nanosphere as an amplifier of oxidative stress for enhanced radio-chemodynamic combination therapy. Regenerative Biomaterials, 2022, 9, .	5.6	3
41	Frontiers in regenerative medical materials: Comments from the participants of the 2014 China-Korea Symposium on Biomimetic and Regenerative Medical Materials. International Journal of Energy Production and Management, 2015, 2, 71-76.	3.7	2
42	Biomaterials for Regenerative Medicine. Advanced Healthcare Materials, 2020, 9, 2001920.	7.6	1