## **Carmel B Breslin**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2675461/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The Electrochemical Detection of 4-chloro-2-methylphenoxyacetic Acid (MCPA) Using a Simple<br>Activated Glassy Carbon Electrode. Journal of the Electrochemical Society, 2022, 169, 037514.                                                                         | 2.9  | 3         |
| 2  | Emerging Layered Materials and Their Applications in the Corrosion Protection of Metals and Alloys.<br>Sustainability, 2022, 14, 4079.                                                                                                                              | 3.2  | 8         |
| 3  | Heterostructures of mixed metal oxides (ZnMnO3/ZnO) synthesized by a wet-chemical approach and their application for the electrochemical detection of the drug chlorpromazine. Composites Part B: Engineering, 2022, 236, 109822.                                   | 12.0 | 13        |
| 4  | Review—Recent Developments in the Applications of 2D Transition Metal Dichalcogenides as<br>Electrocatalysts in the Generation of Hydrogen for Renewable Energy Conversion. Journal of the<br>Electrochemical Society, 2022, 169, 064504.                           | 2.9  | 19        |
| 5  | Recent Developments in Chitosan-Based Adsorbents for the Removal of Pollutants from Aqueous<br>Environments. Molecules, 2021, 26, 594.                                                                                                                              | 3.8  | 153       |
| 6  | Synthesis and Characterization of Pyrochlore-Type Praseodymium Stannate Nanoparticles: An<br>Effective Electrocatalyst for Detection of Nitrofurazone Drug in Biological Samples. Inorganic<br>Chemistry, 2021, 60, 2464-2476.                                      | 4.0  | 33        |
| 7  | Cyclodextrins as Supramolecular Recognition Systems: Applications in the Fabrication of Electrochemical Sensors. Materials, 2021, 14, 1668.                                                                                                                         | 2.9  | 26        |
| 8  | Graphene-Based Materials Immobilized within Chitosan: Applications as Adsorbents for the Removal of<br>Aquatic Pollutants. Materials, 2021, 14, 3655.                                                                                                               | 2.9  | 31        |
| 9  | Preparation and Antimicrobial Properties of Alginate and Serum Albumin/Glutaraldehyde Hydrogels<br>Impregnated with Silver(I) Ions. Chemistry, 2021, 3, 672-686.                                                                                                    | 2.2  | 8         |
| 10 | Electrochemical determination of acetaminophen at a carbon electrode modified in the presence of<br>β-cyclodextrin: role of the activated glassy carbon and the electropolymerised β-cyclodextrin. Journal<br>of Solid State Electrochemistry, 2021, 25, 2599-2609. | 2.5  | 5         |
| 11 | Electrochemical formation of N–substituted polypyrrole nanowires, microwires and open microtubes and their decoration with copper structures. Synthetic Metals, 2021, 280, 116881.                                                                                  | 3.9  | 2         |
| 12 | Fabrication of a Selective Sensor Amplification Probe Modified with Multi-Component Zn2SnO4/SnO2<br>Heterostructured Microparticles as a Robust Electrocatalyst for Electrochemical Detection of<br>Antibacterial Drug Secnidazole. Materials, 2021, 14, 6700.      | 2.9  | 6         |
| 13 | Electrocatalytic Studies of Coral-Shaped Samarium Stannate Nanoparticles for Selective Detection of Azathioprine in Biological Samples. ACS Applied Nano Materials, 2021, 4, 13048-13059.                                                                           | 5.0  | 11        |
| 14 | Electrostatic interactions between viologens and a sulfated β-cyclodextrin; formation of insoluble<br>aggregates with benzyl viologens. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2020,<br>96, 155-167.                                             | 1.6  | 1         |
| 15 | Electrochemical formation of silver nanoparticles and their applications in the reduction and detection of nitrates at neutral pH. Journal of Applied Electrochemistry, 2020, 50, 125-138.                                                                          | 2.9  | 15        |
| 16 | Review—Two-Dimensional Titanium Carbide MXenes and Their Emerging Applications as<br>Electrochemical Sensors. Journal of the Electrochemical Society, 2020, 167, 037514.                                                                                            | 2.9  | 49        |
| 17 | Formation of benzyl viologen-containing films at copper and their protective properties.<br>Electrochimica Acta, 2020, 342, 136071.                                                                                                                                 | 5.2  | 1         |
| 18 | Review of Recent Developments in the Formulation of Graphene-Based Coatings for the Corrosion Protection of Metals and Alloys. Corrosion and Materials Degradation, 2020, 1, 296-327.                                                                               | 2.4  | 26        |

| #  | Article                                                                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Graphene-Modified Composites and Electrodes and Their Potential Applications in the Electro-Fenton<br>Process. Materials, 2020, 13, 2254.                                                                     | 2.9  | 28        |
| 20 | Electrochemical formation of silver nanoparticles and their catalytic activity immobilised in a hydrogel matrix. Colloid and Polymer Science, 2020, 298, 549-558.                                             | 2.1  | 3         |
| 21 | Review—2D Graphene and Graphene-Like Materials and Their Promising Applications in the Generation of Hydrogen Peroxide. Journal of the Electrochemical Society, 2020, 167, 126502.                            | 2.9  | 20        |
| 22 | The Influence of Carbon Nanotubes on the Protective Properties of Polypyrrole Formed at Copper.<br>Materials, 2019, 12, 2587.                                                                                 | 2.9  | 4         |
| 23 | The removal of phosphates using electrocoagulation with Alâ^'Mg anodes. Journal of<br>Electroanalytical Chemistry, 2019, 846, 113161.                                                                         | 3.8  | 30        |
| 24 | Evaluating the ability of energy dispersive X-ray analysis to monitor binding oil content of carbon paste electrodes exposed to biofouling agents. Journal of Electroanalytical Chemistry, 2019, 847, 113237. | 3.8  | 1         |
| 25 | The formation and properties of polypyrrole doped with an immobile antibiotic. Journal of Solid State<br>Electrochemistry, 2019, 23, 2031-2042.                                                               | 2.5  | 3         |
| 26 | Electrocoagulation using stainless steel anodes: Simultaneous removal of phosphates, Orange II and zinc ions. Journal of Hazardous Materials, 2019, 374, 152-158.                                             | 12.4 | 23        |
| 27 | The incorporation and controlled release of dopamine from a sulfonated β–cyclodextrin–doped conducting polymer. Journal of Polymer Research, 2019, 26, 1.                                                     | 2.4  | 6         |
| 28 | The selective electrochemical sensing of dopamine at a polypyrrole film doped with an anionic βâ^'cyclodextrin. Journal of Electroanalytical Chemistry, 2019, 855, 113614.                                    | 3.8  | 19        |
| 29 | Studies on the formation and properties of polypyrrole doped with ionised β-cyclodextrins: influence of the anionic pendants. Journal of Solid State Electrochemistry, 2019, 23, 615-626.                     | 2.5  | 3         |
| 30 | Electrochemistry of viologens at polypyrrole doped with sulfonated β–cyclodextrin. Journal of<br>Electroanalytical Chemistry, 2019, 832, 399-407.                                                             | 3.8  | 9         |
| 31 | The incorporation of drug molecules with poor water solubility into polypyrrole as dopants:<br>Indomethacin and sulindac. Electrochimica Acta, 2019, 296, 848-855.                                            | 5.2  | 12        |
| 32 | Electrocoagulation using aluminium anodes activated with Mg, In and Zn alloying elements. Journal of Hazardous Materials, 2019, 366, 39-45.                                                                   | 12.4 | 18        |
| 33 | Physiological monitoring of tissue pH: InÂvitro characterisation and inÂvivo validation of a quinone-modified carbon paste electrode. Electrochimica Acta, 2019, 298, 484-495.                                | 5.2  | 9         |
| 34 | Electrochemical detection of Cr(VI) with carbon nanotubes decorated with gold nanoparticles.<br>Journal of Applied Electrochemistry, 2019, 49, 195-205.                                                       | 2.9  | 51        |
| 35 | Electrochemical detection of glucose at physiological pH using gold nanoparticles deposited on carbon nanotubes. Sensors and Actuators B: Chemical, 2019, 282, 490-499.                                       | 7.8  | 49        |
| 36 | The aqueous deposition of a pH sensitive quinone on carbon paste electrodes using linear sweep voltammetry. Journal of Electroanalytical Chemistry, 2018, 828, 137-143.                                       | 3.8  | 5         |

| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Polypyrrole doped with dodecylbenzene sulfonate as a protective coating for copper. Electrochimica<br>Acta, 2018, 291, 362-372.                                                                                              | 5.2 | 18        |
| 38 | Formation of polypyrrole with dexamethasone as a dopant: Its cation and anion exchange properties.<br>Journal of Electroanalytical Chemistry, 2018, 824, 188-194.                                                            | 3.8 | 13        |
| 39 | Amendment of cattle slurry with the nitrification inhibitor dicyandiamide during storage: A new effective and practical N2O mitigation measure for landspreading. Agriculture, Ecosystems and Environment, 2016, 215, 68-75. | 5.3 | 15        |
| 40 | Non-Enzymatic Selective Detection of Glucose Based on a Gold Nanoparticle- Carbon Nanotube<br>Composite Film. ECS Transactions, 2014, 58, 59-65.                                                                             | 0.5 | 0         |
| 41 | The Incorporation of Bovine Serum Albumin into a Polypyrrole Film in One Simple Step. ECS<br>Transactions, 2014, 58, 1-13.                                                                                                   | 0.5 | 0         |
| 42 | An Electrochemical Study of Bulk and Nanowire Morphologies of Electrodeposited Polypyrrole. ECS<br>Transactions, 2014, 58, 51-58.                                                                                            | 0.5 | 1         |
| 43 | The development of a novel urea sensor using polypyrrole. Electrochimica Acta, 2014, 145, 19-26.                                                                                                                             | 5.2 | 24        |
| 44 | The development of a highly sensitive urea sensor due to the formation of an inclusion complex between urea and sulfonated-l²-cyclodextrin. Electrochimica Acta, 2014, 125, 250-257.                                         | 5.2 | 14        |
| 45 | Slow delivery of a nitrification inhibitor (dicyandiamide) to soil using a biodegradable hydrogel of chitosan. Chemosphere, 2013, 93, 2854-2858.                                                                             | 8.2 | 29        |
| 46 | The effect of dopant pKa and the solubility of corresponding acid on the electropolymerisation of pyrrole. Electrochimica Acta, 2013, 92, 276-284.                                                                           | 5.2 | 6         |
| 47 | Electrochemical Deposition of Hollow N-Substituted Polypyrrole Microtubes from an Acoustically<br>Formed Emulsion. Macromolecules, 2013, 46, 1008-1016.                                                                      | 4.8 | 15        |
| 48 | Investigation of the Electrochemical Behaviour of MWCNTs in the Detection of Cr(VI). ECS Transactions, 2012, 41, 1-7.                                                                                                        | 0.5 | 3         |
| 49 | Electrochemical Sensing of Dopamine Using a Dodecylsulfate Doped Polypyrrole Film. ECS<br>Transactions, 2012, 41, 15-21.                                                                                                     | 0.5 | 0         |
| 50 | Electrodeposition of Zinc Hydroxysulfate Nanosheets and Reduction to Zinc Metal Microdendrites on<br>Polypyrrole Films. Journal of Nanoscience and Nanotechnology, 2012, 12, 338-349.                                        | 0.9 | 11        |
| 51 | Simultaneous electrochemical detection of the catecholamines and ascorbic acid at PEDOT/S-β-CD modified gold electrodes. Journal of Electroanalytical Chemistry, 2012, 667, 30-37.                                           | 3.8 | 26        |
| 52 | Corrosion protection of copper using polypyrrole electrosynthesised from a salicylate solution.<br>Corrosion Science, 2012, 59, 179-185.                                                                                     | 6.6 | 64        |
| 53 | Facile template-free electrochemical preparation of poly[N-(2-cyanoethyl)pyrrole] nanowires.<br>Electrochemistry Communications, 2012, 20, 79-82.                                                                            | 4.7 | 9         |
| 54 | An electrochemical study in aqueous solutions on the binding of dopamine to a sulfonated cyclodextrin host. Electrochimica Acta, 2012, 59, 290-295.                                                                          | 5.2 | 6         |

| #  | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Complexation study and spectrofluorometric determination of the binding constant for diquat and p-sulfonatocalix[4]arene. Tetrahedron, 2012, 68, 3815-3821.                                                           | 1.9 | 12        |
| 56 | Electrochemical Characterisation of Polypyrrole Doped with <i>p</i> â€&ulfonatocalix[4]arene.<br>Electroanalysis, 2012, 24, 293-302.                                                                                  | 2.9 | 7         |
| 57 | Electrocoagulation for the Effective Removal of Pollutants. ECS Meeting Abstracts, 2012, , .                                                                                                                          | 0.0 | 1         |
| 58 | Electrochemical Fabrication of Copper-Based Hybrid Microstructures and Mechanism of Formation of<br>Related Hierarchical Structures on Polypyrrole Films. Journal of Physical Chemistry C, 2011, 115,<br>20076-20083. | 3.1 | 13        |
| 59 | Electrochemical Deposition of Hierarchical Micro/Nanostructures of Copper Hydroxysulfates on<br>Polypyrroleâ^'Polystyrene Sulfonate Films. Journal of Physical Chemistry C, 2011, 115, 8725-8734.                     | 3.1 | 38        |
| 60 | A spectrophotometric and NMR study on the formation of an inclusion complex between dopamine and a sulfonated cyclodextrin host. Journal of Electroanalytical Chemistry, 2011, 661, 179-185.                          | 3.8 | 18        |
| 61 | Electrochemical Conversion of Copperâ€Based Hierarchical Micro/Nanostructures to Copper Metal<br>Nanoparticles and Their Testing in Nitrate Sensing. Electroanalysis, 2011, 23, 2164-2173.                            | 2.9 | 27        |
| 62 | Application of Carbon Modified Materials in the Detection of Cr(VI). ECS Meeting Abstracts, 2011, , .                                                                                                                 | 0.0 | 0         |
| 63 | The selective detection of dopamine at a polypyrrole film doped with sulfonated β-cyclodextrins.<br>Sensors and Actuators B: Chemical, 2010, 150, 498-504.                                                            | 7.8 | 82        |
| 64 | Remediation of chromium(VI) at polypyrrole-coated titanium. Journal of Applied Electrochemistry, 2009, 39, 1251-1257.                                                                                                 | 2.9 | 12        |
| 65 | Polypyrrole electrodeposited on copper from an aqueous phosphate solution: Corrosion protection properties. Corrosion Science, 2007, 49, 1765-1776.                                                                   | 6.6 | 101       |
| 66 | Polyaniline-coated iron: studies on the dissolution and electrochemical activity as a function of pH.<br>Surface and Coatings Technology, 2005, 190, 264-270.                                                         | 4.8 | 54        |
| 67 | Enantioselective Detection of D- and L-Phenylalanine Using Optically Active Polyaniline.<br>Electroanalysis, 2005, 17, 532-537.                                                                                       | 2.9 | 34        |
| 68 | Surface engineering: corrosion protection using conducting polymers. Materials & Design, 2005, 26, 233-237.                                                                                                           | 5.1 | 96        |
| 69 | The Formation of Polypyrrole at Iron from 1-Butyl-3-methylimidazolium Hexafluorophosphate. Journal of the Electrochemical Society, 2005, 152, D6.                                                                     | 2.9 | 25        |
| 70 | Formation of adherent polypyrrole coatings on Ti and Ti–6Al–4V alloy. Synthetic Metals, 2005, 148,<br>111-118.                                                                                                        | 3.9 | 24        |
| 71 | Reduction of hexavalent chromium at a polypyrrole-coated aluminium electrode: Synergistic interactions. Journal of Applied Electrochemistry, 2004, 34, 191-195.                                                       | 2.9 | 29        |
| 72 | Oxidation and photo-induced oxidation of glucose at a polyaniline film modified by copper particles.<br>Electrochimica Acta, 2004, 49, 4497-4503.                                                                     | 5.2 | 111       |

| #  | Article                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Reduction of Cr(VI) at a Polyaniline Film:Â Influence of Film Thickness and Oxidation State.<br>Environmental Science & Technology, 2004, 38, 4671-4676.                 | 10.0 | 64        |
| 74 | An investigation into the degradation of polyaniline films grown on iron from oxalic acid. Synthetic Metals, 2004, 144, 125-131.                                         | 3.9  | 40        |
| 75 | The electrochemical deposition of polyaniline at pure aluminium: electrochemical activity and corrosion protection properties. Electrochimica Acta, 2003, 48, 721-732.   | 5.2  | 120       |
| 76 | The electropolymerization of pyrrole at a CuNi electrode: corrosion protection properties.<br>Corrosion Science, 2003, 45, 2837-2850.                                    | 6.6  | 67        |
| 77 | Corrosion Protection Properties Afforded by an In Situ Electropolymerized Polypyrrole Layer on CuZn. Journal of the Electrochemical Society, 2003, 150, B540.            | 2.9  | 13        |
| 78 | The electrochemical synthesis of polypyrrole at a copper electrode: corrosion protection properties.<br>Electrochimica Acta, 2002, 47, 4467-4476.                        | 5.2  | 161       |
| 79 | Electrochemical studies on the stability and corrosion resistance of titanium-based implant materials.<br>Biomaterials, 2001, 22, 1531-1539.                             | 11.4 | 290       |
| 80 | Title is missing!. Journal of Applied Electrochemistry, 2001, 31, 509-516.                                                                                               | 2.9  | 90        |
| 81 | The electrochemical behaviour of CuZn under conditions of illumination. Electrochimica Acta, 2000, 45, 4015-4023.                                                        | 5.2  | 10        |
| 82 | Photo-induced dissolution of zinc in alkaline solutions. Electrochimica Acta, 2000, 45, 1571-1579.                                                                       | 5.2  | 80        |
| 83 | Electrochemical behaviour of aluminium in the presence of EDTA-containing chloride solutions.<br>Journal of Applied Electrochemistry, 2000, 30, 675-683.                 | 2.9  | 37        |
| 84 | The Influence of Ultraviolet Illumination on the Passive Behavior of Zinc. Journal of the Electrochemical Society, 2000, 147, 1401.                                      | 2.9  | 8         |
| 85 | The corrosion protection afforded by rare earth conversion coatings applied to magnesium.<br>Corrosion Science, 2000, 42, 275-288.                                       | 6.6  | 399       |
| 86 | Activation of pure Al in an indium-containing electrolyte — an electrochemical noise and impedance<br>study. Corrosion Science, 2000, 42, 1023-1039.                     | 6.6  | 40        |
| 87 | Electrochemical studies on single-crystal aluminium surfaces. Electrochimica Acta, 1998, 43, 1715-1720.                                                                  | 5.2  | 55        |
| 88 | The influence of UV light on the dissolution and passive behavior of copper-containing alloys in chloride solutions. Electrochimica Acta, 1998, 44, 643-651.             | 5.2  | 54        |
| 89 | Scanning Kelvin probe analysis of the potential distribution under small drops of electrolyte.<br>Materials and Corrosion - Werkstoffe Und Korrosion, 1998, 49, 569-575. | 1.5  | 24        |
| 90 | Sealing of Anodized Aluminum Alloys with Rare Earth Metal Salt Solutions. Journal of the Electrochemical Society, 1998, 145, 2792-2798.                                  | 2.9  | 51        |

| #   | Article                                                                                                                                                 | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Influence of Rare-Earth Metal Passivation Treatments on the Dissolution of Tin-Zinc Coatings.<br>Corrosion, 1998, 54, 964-971.                          | 1.1 | 6         |
| 92  | Electronic Structures of Aluminum and Aluminum Clusters Doped with Other Atoms. Journal of the Electrochemical Society, 1997, 144, L217-L218.           | 2.9 | 0         |
| 93  | The electrochemical behaviour of stainless steels following surface modification in ceriumcontaining solutions. Corrosion Science, 1997, 39, 1061-1073. | 6.6 | 28        |
| 94  | The influence of dichromate and cerium passivation treatments on the dissolution of coatings.<br>Corrosion Science, 1997, 39, 1341-1350.                | 6.6 | 19        |
| 95  | Surface modification of stainless steels: green technology for corrosion protection. Surface and Coatings Technology, 1997, 90, 224-228.                | 4.8 | 32        |
| 96  | Influence of uv light on the passive behaviour of SS316—effect of prior illumination. Electrochimica Acta, 1997, 42, 127-136.                           | 5.2 | 55        |
| 97  | Photo-inhibition of pitting corrosion on types 304 and 316 stainless steels in chloride-containing solutions. Electrochimica Acta, 1997, 42, 137-144.   | 5.2 | 51        |
| 98  | An efficient MSXα technique for the study of large clusters. Computational and Theoretical Chemistry, 1995, 331, 139-145.                               | 1.5 | 0         |
| 99  | The electrochemical behaviour of Alî—,Znî—,In and Alî—,Znî—,Hg alloys in aqueous halide solutions. Corrosion<br>Science, 1994, 36, 85-97.               | 6.6 | 27        |
| 100 | Studies on the passivation of aluminium in chromate and molybdate solutions. Corrosion Science, 1994, 36, 1143-1154.                                    | 6.6 | 98        |
| 101 | The synergistic interaction between indium and zinc in the activation of aluminium in aqueous electrolytes. Corrosion Science, 1994, 36, 231-240.       | 6.6 | 25        |
| 102 | The activation of aluminium by indium ions in chloride, bromide and iodide solutions. Corrosion Science, 1993, 34, 327-341.                             | 6.6 | 61        |
| 103 | The activation of aluminium by activator elements. Corrosion Science, 1993, 35, 197-203.                                                                | 6.6 | 13        |
| 104 | The corrosion/dissolution behaviour of aluminium in solutions containing both chloride and fluoride ions. Corrosion Science, 1993, 34, 1495-1507.       | 6.6 | 16        |
| 105 | The effects of indium precipitates on the electrochemical dissolution of Al-In alloys. Corrosion Science, 1993, 34, 1099-1109.                          | 6.6 | 22        |
| 106 | The electrochemical behaviour of aluminium activated by gallium in aqueous electrolytes. Corrosion Science, 1992, 33, 1735-1746.                        | 6.6 | 54        |
| 107 | Activation of aluminium in halide solutions containing â€~activator ions'. Corrosion Science, 1992, 33, 1161-1177.                                      | 6.6 | 56        |
| 108 | Stability of passive films formed on aluminium in aqueous halide solutions. Corrosion Engineering<br>Science and Technology, 1991, 26, 255-259.         | 0.3 | 49        |

7