

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2675199/publications.pdf Version: 2024-02-01



WENVILL

| #  | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Toward Efficient Orange Emissive Carbon Nanodots through Conjugated sp <sup>2</sup> â€Domain<br>Controlling and Surface Charges Engineering. Advanced Materials, 2016, 28, 3516-3521.                                        | 21.0 | 583       |
| 2  | Hydroxyl-Terminated CuInS <sub>2</sub> Based Quantum Dots: Toward Efficient and Bright Light<br>Emitting Diodes. Chemistry of Materials, 2016, 28, 1085-1091.                                                                | 6.7  | 155       |
| 3  | Highly Controllable and Efficient Synthesis of Mixed-Halide CsPbX <sub>3</sub> (X = Cl, Br, I)<br>Perovskite QDs toward the Tunability of Entire Visible Light. ACS Applied Materials & Interfaces,<br>2017, 9, 33020-33028. | 8.0  | 132       |
| 4  | Ultrastable Quantum-Dot Light-Emitting Diodes by Suppression of Leakage Current and Exciton Quenching Processes. ACS Applied Materials & Interfaces, 2016, 8, 31385-31391.                                                   | 8.0  | 119       |
| 5  | Electrostatic Assembly Guided Synthesis of Highly Luminescent Carbonâ€Nanodots@BaSO <sub>4</sub><br>Hybrid Phosphors with Improved Stability. Small, 2017, 13, 1602055.                                                      | 10.0 | 118       |
| 6  | High color purity ZnSe/ZnS core/shell quantum dot based blue light emitting diodes with an inverted device structure. Applied Physics Letters, 2013, 103, .                                                                  | 3.3  | 86        |
| 7  | Near-Unity Red Mn <sup>2+</sup> Photoluminescence Quantum Yield of Doped CsPbCl <sub>3</sub><br>Nanocrystals with Cd Incorporation. Journal of Physical Chemistry Letters, 2020, 11, 2142-2149.                              | 4.6  | 77        |
| 8  | Highly Efficient and Low Turn-On Voltage Quantum Dot Light-Emitting Diodes by Using a Stepwise<br>Hole-Transport Layer. ACS Applied Materials & Interfaces, 2015, 7, 15955-15960.                                            | 8.0  | 76        |
| 9  | The work mechanism and sub-bandgap-voltage electroluminescence in inverted quantum dot<br>light-emitting diodes. Scientific Reports, 2014, 4, 6974.                                                                          | 3.3  | 73        |
| 10 | Exciton Relaxation Dynamics in Photo-Excited CsPbI3 Perovskite Nanocrystals. Scientific Reports, 2016, 6, 29442.                                                                                                             | 3.3  | 69        |
| 11 | Efficient Quantum Dot Light-Emitting Diodes by Controlling the Carrier Accumulation and Exciton Formation. ACS Applied Materials & amp; Interfaces, 2014, 6, 14001-14007.                                                    | 8.0  | 68        |
| 12 | A review on the electroluminescence properties of quantum-dot light-emitting diodes. Organic Electronics, 2021, 90, 106086.                                                                                                  | 2.6  | 67        |
| 13 | Color-tunable photoluminescence of Cu-doped Zn–In–Se quantum dots and their<br>electroluminescence properties. Journal of Materials Chemistry C, 2016, 4, 581-588.                                                           | 5.5  | 48        |
| 14 | Inverted CdSe/CdS/ZnS quantum dot light emitting devices with titanium dioxide as an electron-injection contact. Nanoscale, 2013, 5, 3474.                                                                                   | 5.6  | 47        |
| 15 | Top-emitting quantum dots light-emitting devices employing microcontact printing with electricfield-independent emission. Scientific Reports, 2016, 6, 22530.                                                                | 3.3  | 46        |
| 16 | Highly Luminescent Carbonâ€Nanoparticleâ€Based Materials: Factors Influencing Photoluminescence<br>Quantum Yield. Particle and Particle Systems Characterization, 2014, 31, 1175-1182.                                       | 2.3  | 44        |
| 17 | Vacuum-free transparent quantum dot light-emitting diodes with silver nanowire cathode. Scientific Reports, 2015, 5, 12499.                                                                                                  | 3.3  | 44        |
| 18 | Yellow-Emitting Carbon Nanodots and Their Flexible and Transparent Films for White LEDs. ACS Applied Materials & amp; Interfaces, 2016, 8, 33102-33111.                                                                      | 8.0  | 43        |

Wenyu Ji

| #  | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Highly efficient flexible quantum-dot light emitting diodes with an ITO/Ag/ITO cathode. Journal of<br>Materials Chemistry C, 2017, 5, 4543-4548.                                                                 | 5.5 | 42        |
| 20 | Over 800% efficiency enhancement of all-inorganic quantum-dot light emitting diodes with an ultrathin alumina passivating layer. Nanoscale, 2018, 10, 11103-11109.                                               | 5.6 | 36        |
| 21 | Highly Efficient Light Emitting Diodes Based on In Situ Fabricated FAPbI 3 Nanocrystals: Solvent Effects<br>of Onâ€Chip Crystallization. Advanced Optical Materials, 2019, 7, 1900774.                           | 7.3 | 34        |
| 22 | Improving the efficiency and reducing efficiency roll-off in quantum dot light emitting devices by utilizing plasmonic Au nanoparticles. Journal of Materials Chemistry C, 2013, 1, 470-476.                     | 5.5 | 33        |
| 23 | Degradation of quantum dot light emitting diodes, the case under a low driving level. Journal of<br>Materials Chemistry C, 2020, 8, 2014-2018.                                                                   | 5.5 | 31        |
| 24 | The nanotoxicity investigation of optical nanoparticles to cultured cells in vitro. Toxicology Reports, 2014, 1, 137-144.                                                                                        | 3.3 | 30        |
| 25 | Influence of Shell Thickness on the Performance of NiO-Based All-Inorganic Quantum Dot<br>Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 14894-14900.                                      | 8.0 | 30        |
| 26 | Low turn-on voltage and highly bright Ag–In–Zn–S quantum dot light-emitting diodes. Journal of<br>Materials Chemistry C, 2018, 6, 4683-4690.                                                                     | 5.5 | 28        |
| 27 | Research on the influence of polar solvents on CsPbBr <sub>3</sub> perovskite QDs. RSC Advances, 2021, 11, 27333-27337.                                                                                          | 3.6 | 27        |
| 28 | Efficient CuInS <sub>2</sub> /ZnS Quantum Dots Lightâ€Emitting Diodes in Deep Red Region Using PEIE<br>Modified ZnO Electron Transport Layer. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1800575. | 2.4 | 24        |
| 29 | Efficient Structure for InP/ZnS-Based Electroluminescence Device by Embedding the Emitters in the<br>Electron-Dominating Interface. Journal of Physical Chemistry Letters, 2020, 11, 1835-1839.                  | 4.6 | 24        |
| 30 | Improving efficiency roll-off in phosphorescent OLEDs by modifying the exciton lifetime. Optics<br>Letters, 2012, 37, 2019.                                                                                      | 3.3 | 21        |
| 31 | Exploring Electronic and Excitonic Processes toward Efficient Deep-Red CuInS <sub>2</sub> /ZnS<br>Quantum-Dot Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2019, 11, 36925-36930.                  | 8.0 | 21        |
| 32 | Electronic and Excitonic Processes in Quantum Dot Light-Emitting Diodes. Journal of Physical<br>Chemistry Letters, 2022, 13, 2878-2884.                                                                          | 4.6 | 21        |
| 33 | Efficient energy transfer from hole transporting materials to CdSe-core CdS/ZnCdS/ZnS-multishell<br>quantum dots in type II aligned blend films. Applied Physics Letters, 2011, 99, 093106.                      | 3.3 | 19        |
| 34 | Localized Excitonic Electroluminescence from Carbon Nanodots. Journal of Physical Chemistry<br>Letters, 2022, 13, 1587-1595.                                                                                     | 4.6 | 18        |
| 35 | Near-unity blue-orange dual-emitting Mn-doped perovskite nanocrystals with metal alloying for efficient white light-emitting diodes. Journal of Colloid and Interface Science, 2021, 603, 864-873.               | 9.4 | 17        |
| 36 | Ultrafast Carrier Dynamics and Hot Electron Extraction in Tetrapod-Shaped CdSe Nanocrystals. ACS<br>Applied Materials & Interfaces, 2015, 7, 7938-7944.                                                          | 8.0 | 14        |

Wenyu Ji

| #  | Article                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Highâ€Performance Blue Quantumâ€Dot Lightâ€Emitting Diodes by Alleviating Electron Trapping. Advanced<br>Optical Materials, 2022, 10, .                                                                      | 7.3  | 14        |
| 38 | Photoinduced Charge Separation and Recombination Processes in CdSe Quantum Dot and Graphene<br>Oxide Composites with Methylene Blue as Linker. Journal of Physical Chemistry Letters, 2013, 4,<br>2919-2925. | 4.6  | 13        |
| 39 | Cadmium-free quantum dot light emitting devices: energy-transfer realizing pure blue emission. Optics<br>Letters, 2013, 38, 7.                                                                               | 3.3  | 13        |
| 40 | Highly Sensitive Homogeneous Immunoassays Based on Construction of Silver Triangular<br>Nanoplates-Quantum Dots FRET System. Scientific Reports, 2016, 6, 26534.                                             | 3.3  | 12        |
| 41 | Color-Tunable Alternating-Current Quantum Dot Light-Emitting Devices. ACS Applied Materials &<br>Interfaces, 2021, 13, 45815-45821.                                                                          | 8.0  | 12        |
| 42 | Unraveling the effect of shell thickness on charge injection in blue quantum-dot light-emitting diodes. Applied Physics Letters, 2021, 119, .                                                                | 3.3  | 12        |
| 43 | Dual-encryption based on facilely synthesized supra-(carbon nanodots) with water-induced enhanced<br>luminescence. RSC Advances, 2016, 6, 79620-79624.                                                       | 3.6  | 11        |
| 44 | Temperature-dependent recombination dynamics and electroluminescence characteristics of colloidal CdSe/ZnS core/shell quantum dots. Applied Physics Letters, 2021, 119, .                                    | 3.3  | 10        |
| 45 | Suppressed efficiency roll-off in blue light-emitting diodes by balancing the spatial charge distribution. Journal of Materials Chemistry C, 2020, 8, 12927-12934.                                           | 5.5  | 10        |
| 46 | Polyethylenimine modified sol-gel ZnO electron-transporting layers for quantum-dot light-emitting diodes. Organic Electronics, 2022, 100, 106393.                                                            | 2.6  | 9         |
| 47 | Efficient, air-stable quantum dots light-emitting devices with MoO3 modifying the anode. Journal of Luminescence, 2013, 143, 442-446.                                                                        | 3.1  | 8         |
| 48 | Highly efficient organic light-emitting devices by introducing traps in the hole-injection layer. RSC<br>Advances, 2013, 3, 14616.                                                                           | 3.6  | 8         |
| 49 | Highly efficient Ag–In–Zn–S quantum dot light-emitting diodes with a hole-spacing interlayer.<br>Organic Electronics, 2020, 84, 105809.                                                                      | 2.6  | 8         |
| 50 | On the accurate characterization of quantum-dot light-emitting diodes for display applications. Npj<br>Flexible Electronics, 2022, 6, .                                                                      | 10.7 | 8         |
| 51 | Unravelling the bending stability of flexible quantum-dot light-emitting diodes. Flexible and Printed Electronics, 2022, 7, 015006.                                                                          | 2.7  | 4         |